Clustering Methods for Graph Data with Structural Fluctuation
Project/Area Number |
16K16128
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Soft computing
|
Research Institution | Kindai University |
Principal Investigator |
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2016: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
|
Keywords | クラスタリング / グラフクラスタリング / 機械学習 / ソフトコンピューティング / 構造的ゆらぎ / クラスタ数推定 / 妥当性基準 / Modularity / 知識融合 / ゆらぎモデル / データのゆらぎ |
Outline of Final Research Achievements |
This research project aimed to establish a novel data analysis framework to handle massive and complex datasets through graph data mining for data with structural fluctuation. First, mathematical models to handle graph data with structural fluctuation is investigated in data analysis procedures. Second, clustering methods based on proposed mathematical models are constructed. Next, the knowledge-based models are constructed to handle graph data with structural fluctuation. Finally, the proposed clustering methods are organized through comparative numerical experiments with conventional methods.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究課題では、大規模・不確実データのマイニングを目的に、グラフデータに伴う構造的ゆらぎに対する知識のモデル化に取り組んだ。また、構築したモデルとクラスタリング手法の融合に取り組み、新たなクラスタリング手法を開発した。さらに、理論的検討および数値実験等を通じて得られた知見を基に、開発手法と方法論の包括的発展に取り組んだ。これらの成果により、大規模グラフデータに隠された因果関係や相互作用を明らかにするデータマイニングの実現に向けた方法論の基盤を築いた。
|
Report
(4 results)
Research Products
(29 results)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
[Presentation] On Kernelized Sequential Hard Clustering2016
Author(s)
Yukihiro Hamasuna, Yasunori Endo
Organizer
Joint 8th International Conference on Soft Computing and Intelligent Systems and 17th International Symposium on Advanced Intelligent Systems (SCIS&ISIS 2016)
Place of Presentation
北海学園大学 豊平キャンパス(北海道・札幌市)
Year and Date
2016-08-25
Related Report
Int'l Joint Research