• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Econometric Analysis on Ultra-high dimensional Factor models and DI forecasts

Research Project

Project/Area Number 16K17100
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Economic statistics
Research InstitutionAoyama Gakuin University (2018-2019)
Otaru University of Commerce (2016-2017)

Principal Investigator

Tanaka Shinya  青山学院大学, 経済学部, 准教授 (80727149)

Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2016: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords超高次元経済データ分析 / 罰則付回帰 / Lasso / 経済予測 / パネルベクトル自己回帰モデル / マクロ経済予測 / 超高次元パネルVARモデル / 超高次元経済データ / 罰則付き回帰 / 経済統計学
Outline of Final Research Achievements

In this research project, we focused on both theoretical and empirical studies concerning ultra-high dimensional macroeconomic data: we investigated theoretical properties of the penalized regression estimators of the ultra-high dimensional linear regression model with time-dependent regressors and the panel VAR model, as well as empirical application of the penealized regression to macroeconomic forecasting. Through our contributions, we showed the ultra-high dimensional statistical models worked well both theoretically and empirically in macroeconomic time series data.

Academic Significance and Societal Importance of the Research Achievements

近年では膨大な情報・サイズを有する"超"高次元データ(所謂ビッグデータ)が工学,医学,情報通信等の分野において積極的に利用されていることは周知のとおりである.その一方で経済学分野での超高次元データの利用は特に本研究課題を開始した2016年当時において世界的に見ても非常に少ないという状況にあった.その大きな理由として標準的な高次元統計解析手法を経済データに適用した場合の推定量の"ふるまい"について未解明である部分が多かったことが挙げられよう.本研究課題の研究成果は当該問題の解決に大きく寄与し,さらに実際の経済データを用いて超高次元経済データを用いた計量経済分析が実証的にも有用であることを示した.

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (8 results)

All 2020 2019 2018 2017 2016

All Journal Article (4 results) (of which Open Access: 4 results,  Peer Reviewed: 1 results,  Acknowledgement Compliant: 1 results) Presentation (4 results)

  • [Journal Article] 経済時系列データにおける非スパース化Lassoにもとづく検定統計量の有限標本特性 : シミュレーション分析による接近2020

    • Author(s)
      田中晋矢
    • Journal Title

      青山経済論集

      Volume: 71 Pages: 41-56

    • NAID

      120006845604

    • Related Report
      2019 Annual Research Report
    • Open Access
  • [Journal Article] High‐dimensional macroeconomic forecasting and variable selection via penalized regression2019

    • Author(s)
      Uematsu Yoshimasa and Tanaka Shinya
    • Journal Title

      The Econometrics Journal

      Volume: 22 Issue: 1 Pages: 34-56

    • DOI

      10.1111/ectj.12117

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] High-dimensional Macroeconomic Forecasting and Variable Selection via Penalized Regression2018

    • Author(s)
      Yoshimasa Uematsu and Shinya Tanaka
    • Journal Title

      青山学院大学経済学部経済研究所 ワーキングペーパー

      Volume: 2018-4

    • Related Report
      2017 Research-status Report
    • Open Access
  • [Journal Article] Macroeconomic Forecasting and Variable Selection with a Very Large Number of Predictors: A Penalized Regression Approach2017

    • Author(s)
      Yoshimasa Uematsu and Shinya Tanaka
    • Journal Title

      SSRN (Social Science Research Network)

      Volume: id:2927876

    • Related Report
      2016 Research-status Report
    • Open Access / Acknowledgement Compliant
  • [Presentation] Large-Scale Panel Vector Autoregressive Models2019

    • Author(s)
      田中晋矢,植松良公,山形孝志,新谷元嗣
    • Organizer
      Summer Workshop on Economic Theory 2019
    • Related Report
      2019 Annual Research Report
  • [Presentation] Statistical Inference on high-dimensional economic data through the desparsified Lasso: Monte Carlo evidence and its possible directions2019

    • Author(s)
      田中晋矢
    • Organizer
      Data Science Workshop (東北大学大学院経済学研究科サービス・データ科学研究センター)
    • Related Report
      2018 Research-status Report
  • [Presentation] High-dimensional Macroeconomic Forecasting and Variable Selection via Penalized Regression2018

    • Author(s)
      田中晋矢
    • Organizer
      ICS FSファカルティーセミナー(一橋大学大学院国際企業戦略研究科)
    • Related Report
      2017 Research-status Report
  • [Presentation] Macroeconomic Forecasting and Variable Selection with a Very Large Number of Predictors: A Penalized Regression Approach2016

    • Author(s)
      田中晋矢(報告者),植松良公
    • Organizer
      計量経済学セミナー
    • Place of Presentation
      京都大学経済研究所(京都府京都市左京区)
    • Year and Date
      2016-11-16
    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi