Preparation and Application of Composites with Novel Hierarchiral Porous Structure
Project/Area Number |
17H03114
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Polymer/Textile materials
|
Research Institution | Osaka University |
Principal Investigator |
Uyama Hiroshi 大阪大学, 工学研究科, 教授 (70203594)
|
Co-Investigator(Kenkyū-buntansha) |
麻生 隆彬 大阪大学, 工学研究科, 准教授 (50548378)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥17,420,000 (Direct Cost: ¥13,400,000、Indirect Cost: ¥4,020,000)
Fiscal Year 2019: ¥5,460,000 (Direct Cost: ¥4,200,000、Indirect Cost: ¥1,260,000)
Fiscal Year 2018: ¥5,460,000 (Direct Cost: ¥4,200,000、Indirect Cost: ¥1,260,000)
Fiscal Year 2017: ¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
|
Keywords | バクテリアセルロース / モノリス / ポリアクリロニトリル / エチレン-ビニルアルコール共重合体 / 複合材料 / 相分離 / 電気二重層キャパシタ / 炭素材料 |
Outline of Final Research Achievements |
The purpose of this study is preparation, control and functionalization of composites with novel hierarchical porous structure. Polyacrylonitrile (PAN) and ethylene-vinyl alcohol copolymer were used for preparation of porous materials. Activated carbon monolith has been fabricated by carbonization of bacterial cellulose (BC)-PAN composite monolith by physical activation. Unique morphologies are observed for the BC gel; the top view showed a uniform network of fibrous structure whereas the side view displayed a layered structure. Such interesting morphological feature is propagated to the composite monolith and is restored even in the activated carbon monolith. Cyclic voltammetric studies show that these activated carbons with large specific surface area and high microporosity are excellent electrode materials in electric double layer capacitors with capability of high-speed charging and discharging.
|
Academic Significance and Societal Importance of the Research Achievements |
多孔質炭素材料は繊維、吸着材、触媒担体、水素やメタンなどの貯蔵、蓄電デバイス等の様々な分野で応用されている。本研究で開発した多孔質炭素材料は電気二重層キャパシタ(EDLC)の電極としての応用が期待される。自動車のアシスト電源、無停電電源装置、発電変動の激しい太陽光発電の平準化デバイスなど、電力補助システムとして幅広く利用されている。本研究の成果は、このようなエネルギーデバイスの発展につながる点で社会的意義がある。
|
Report
(4 results)
Research Products
(47 results)