• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Uniformity of spectra of arithmetic manifolds and the deep Riemann hypothesis

Research Project

Project/Area Number 17K05184
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionToyo University

Principal Investigator

Koyama Shin-ya  東洋大学, 理工学部, 教授 (50225596)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Keywordsゼータ関数 / セルバーグ・ゼータ関数 / リーマン予想 / 深リーマン予想 / オイラー積 / 素測地線定理 / 素数定理 / 数論的量子カオス
Outline of Final Research Achievements

The main results which we obtained in this research period are as follows: (1) For any Fuchsian group the Euler product of the Selberg zeta function attached with a unitary representation divided by certain explicit terms coming from exceptional zeros and poles converges in the region Re(s)>1/2. In particular, the Euler product of the Selberg zeta function converges in Re(s)>1/2 for any nontrivial irreducible unitary representation under the Selberg 1/4-eigenvalue conjecture. (2) The value of the Euler product obtained in (1) agrees to the value of the Selberg zeta function defined by its analytic continuation.

Academic Significance and Societal Importance of the Research Achievements

リーマン予想が未解決である理由の一つに,予想の定式化が不十分であるという説が長らく唱えられてきた.深リーマン予想はこれを解消するために2010年代に提唱された予想であり,リーマン予想が成り立つ背景にオイラー積の挙動があると主張している.オイラー積の挙動,特に非自明な表現に対するL関数のオイラー積の臨界領域における収束性が示されれば,リーマン予想を証明でき,さらにその成立理由も解明できる.これまで,標数正の関数体上で深リーマン予想の成立が確かめられてきた.本研究では,フックス群のセルバーグ・ゼータ関数に対し,深リーマン予想に相当する命題を証明した.これは,標数0の場合に初めて得られた結果である.

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (10 results)

All 2020 2019 2018 2017

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (7 results) (of which Int'l Joint Research: 4 results,  Invited: 3 results) Book (2 results)

  • [Journal Article] Estimates of lattice points in the discriminant aspect over abelian extension fields2017

    • Author(s)
      Takeda Wataru、Koyama Shin-ya
    • Journal Title

      Forum Mathematicum

      Volume: 0 Issue: 3 Pages: 1-11

    • DOI

      10.1515/forum-2017-0152

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] 多重三角関数 ~ その端緒から最近の進展まで2020

    • Author(s)
      小山信也
    • Organizer
      第2回「多重三角関数とその一般化」
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Convergence of Euler products of the absolute tensor products of L-functions2019

    • Author(s)
      Shin-ya Koyama
    • Organizer
      The Riemann-Roch Theorem over the One-Element- Field
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Applications of Ramanujan's method on the behavior of Euler products to Selberg zeta functions2019

    • Author(s)
      Shin-ya Koyama
    • Organizer
      Analytic and Combinatorial Number Theory: The Legacy of Ramanujan
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Euler products of Selberg zeta functions in the critical strip2018

    • Author(s)
      Shin-ya Koyama
    • Organizer
      Canadian Number Theory Association IX
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Euler products of Selberg zeta functions in the critical strip2018

    • Author(s)
      Shin-ya Koyama
    • Organizer
      Zeta Functions in Okinawa 2018
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] セルバーグ・ゼータ関数のオイラー積の収束性2018

    • Author(s)
      小山信也・金子生弥
    • Organizer
      日本数学会
    • Related Report
      2017 Research-status Report
  • [Presentation] Convergence of Euler products of Selberg zeta funcitons2017

    • Author(s)
      Shin-ya Koyama and Ikuya Kaneko
    • Organizer
      Zeta Functions in Okinawa 2017
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Book] 1日1ページ 数学の教養3652020

    • Author(s)
      クリフォード・A・ピックオーバー,小山信也(監訳)
    • Total Pages
      408
    • Publisher
      ニュートンプレス
    • ISBN
      4315522198
    • Related Report
      2019 Annual Research Report
  • [Book] ゼータへの招待2018

    • Author(s)
      黒川信重・小山信也
    • Total Pages
      168
    • Publisher
      日本評論社
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi