• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Geometric study of hypergeometric functions

Research Project

Project/Area Number 17K14149
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Algebra
Research InstitutionOtaru University of Commerce

Principal Investigator

Goto Yoshiaki  小樽商科大学, 商学部, 准教授 (20742018)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords超幾何関数 / 超幾何積分 / ねじれホモロジー群 / ねじれコホモロジー群 / 基本群 / モノドロミー群 / ねじれ(コ)ホモロジー群 / A-超幾何系
Outline of Final Research Achievements

We studied some types of hypergeometric functions by using geometric tools.
We derived explicit formulas for hypergeometric integrals associated with hyperplane arrangements, and applied them to algebraic statistics. For Lauricella's hypergeometric function F_C, we investigated the monodromy group. We have started a geometric study of A-hypergeometric systems.

Academic Significance and Societal Importance of the Research Achievements

超幾何関数は数学の諸分野のみならず, 統計学, 数理物理学においても登場する重要な関数の1つである. 超幾何関数の研究は様々な方面から行われているが, 特に積分表示およびそれに付随した幾何学的な構造(ホモロジー・コホモロジー)を利用して研究を進め, 深く理解していくことで, 多くの性質(公式など)を組織的に導出する方法が得られる. さらに, それらの統計学などの関連分野への応用も期待される.

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (17 results)

All 2020 2019 2018 2017

All Journal Article (4 results) (of which Peer Reviewed: 4 results,  Open Access: 1 results) Presentation (13 results) (of which Int'l Joint Research: 4 results,  Invited: 8 results)

  • [Journal Article] Picard-Vessiot groups of Lauricella's hypergeometric systems EC and Calabi-Yau varieties arising integral representations2020

    • Author(s)
      Goto Yoshiaki、Koike Kenji
    • Journal Title

      Journal of the London Mathematical Society

      Volume: - Issue: 1 Pages: 22-42

    • DOI

      10.1112/jlms.12311

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Irreducibility of the monodromy representation of Lauricella's $F_C$2019

    • Author(s)
      GOTO Yoshiaki、MATSUMOTO Keiji
    • Journal Title

      Hokkaido Mathematical Journal

      Volume: 48 Issue: 3 Pages: 489-512

    • DOI

      10.14492/hokmj/1573722015

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] The fundamental group of the complement of the singular locus of Lauricella's F_C2018

    • Author(s)
      Goto Yoshiaki、Kaneko Jyoichi
    • Journal Title

      Journal of Singularities

      Volume: 17 Pages: 295-329

    • DOI

      10.5427/jsing.2018.17m

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Pfaffian Equations and Contiguity Relations of the Hypergeometric Function of Type (<i>k</i>+1, <i>k</i>+<i>n</i>+2) and Their Applications2018

    • Author(s)
      Goto Yoshiaki、Matsumoto Keiji
    • Journal Title

      Funkcialaj Ekvacioj

      Volume: 61 Issue: 3 Pages: 315-347

    • DOI

      10.1619/fesi.61.315

    • NAID

      130007534842

    • ISSN
      0532-8721
    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] Finite irreducible monodromy group for Lauricella's F_C2020

    • Author(s)
      Yoshiaki Goto
    • Organizer
      Monodromy and Hypergeometric Functions
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Contiguity relations for hypergeometric integrals of type (k,n)2019

    • Author(s)
      Yoshiaki Goto
    • Organizer
      Dublin Mathematics Colloquium
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Contiguity relations for hypergeometric integrals2019

    • Author(s)
      Yoshiaki Goto
    • Organizer
      Differential systems: from theory to computer mathematics
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 確定特異点型 GKZ 超幾何系の級数解と Euler 型積分2019

    • Author(s)
      後藤 良彰
    • Organizer
      日本数学会北海道支部講演会
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Lauricella's F_C の特異点集合の補集合の基本群について2019

    • Author(s)
      後藤 良彰
    • Organizer
      湯布院代数幾何学ワークショップ
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Finite irreducible monodromy group for Lauricella's F_C2019

    • Author(s)
      後藤 良彰
    • Organizer
      日本数学会 2019年度年会
    • Related Report
      2018 Research-status Report
  • [Presentation] Lauricella F_C のモノドロミー群に関する考察2018

    • Author(s)
      後藤 良彰
    • Organizer
      2018年度 函数方程式論サマーセミナー
    • Related Report
      2018 Research-status Report
  • [Presentation] Lauricella F_C のモノドロミー群について2018

    • Author(s)
      後藤 良彰
    • Organizer
      複素領域における微分方程式とその周辺
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Lauricella F_C のモノドロミー群の構造について2018

    • Author(s)
      後藤 良彰
    • Organizer
      第12回玉原特殊多様体研究集会
    • Related Report
      2018 Research-status Report
  • [Presentation] Monodromy of Lauricella's hypergeometric function F_C (I, II)2018

    • Author(s)
      Yoshiaki Goto
    • Organizer
      Hypergeometric functions and mirror symmetry
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 3変数 Lauricella F_C の singular locus の補集合の基本群2018

    • Author(s)
      後藤 良彰
    • Organizer
      琉球超幾何ワークショップ
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Lauricella F_C の singular locus の補集合の基本群について2017

    • Author(s)
      後藤 良彰
    • Organizer
      第11回 玉原特殊多様体研究集会
    • Related Report
      2017 Research-status Report
  • [Presentation] Appell F_4 から定まる K3 曲面と置換積分について2017

    • Author(s)
      後藤 良彰
    • Organizer
      超幾何方程式研究会 2018
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi