• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Statistical Representation of Internal States of Depth Neural Networks and Exploration of New Learning Methods

Research Project

Project/Area Number 18K11449
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 61030:Intelligent informatics-related
Research InstitutionHosei University (2021-2023)
Tokyo University of Technology (2018-2020)

Principal Investigator

Shibata Chihiro  法政大学, 理工学部, 准教授 (00633299)

Co-Investigator(Kenkyū-buntansha) 持橋 大地  統計数理研究所, 数理・推論研究系, 准教授 (80418508)
吉仲 亮  東北大学, 情報科学研究科, 准教授 (80466424)
Project Period (FY) 2018-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2018: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Keywords深層学習(ディープラーニング) / 形式言語理論 / 形式言語 / Transformer / RNN / 表現学習 / 自然言語処理 / 情報ボトルネック法 / 分布エンコーディング / 深層学習 / 内部表現 / LSTM / ディープラーニング / 統計的学習理論 / 時系列予測
Outline of Final Research Achievements

Tracing and extracting the internal representations of deep learning models is one of the approaches towards enhancing explainablity of AI. In this research, we analyzed deep learning models such as RNNs and Transformers, which were trained from various datasets, from the perspective of syntactic structures. Particularly, we used formal language models to explore what syntactic features can be learned and how these are represented within internal vectors. Additionally, to clarify underlying issues related to internal representations in advance, we employed adversarial datasets. Adversarial datasets contain syntactic errors but only minor differences. We verified whether deep learning models truly acquire the ability to discern syntactic correctness.

Academic Significance and Societal Importance of the Research Achievements

RNNやTransformer などの言語モデルがどの程度構文的な知識を獲得できるのか,また,獲得できるとすれば,それらがどのように埋め込まれるのか,言語モデルの理論に照らし合わせて追求することで,未だにブラックボックスである深層学習モデルの説明可能性に対して一定の方向性を示すことができたと考える.また,今後とも,形式言語クラスやそのアルゴリズム的学習の理論的な研究と,実際の産業で使われるような深層学習の分野との架け橋としての役割を果たしていきたい.

Report

(7 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (8 results)

All 2023 2021 2020 2019 2018

All Journal Article (7 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 5 results,  Open Access: 6 results) Presentation (1 results)

  • [Journal Article] TAYSIR Competition: Transformer+RNN: Algorithms to Yield Simple and Interpretable Representations.2023

    • Author(s)
      Remi Eyraud, Dakotah Lambert, Badr Tahri Joutei, Aidar Gaffarov, Mathias Cabanne, Jeffrey Heinz, Chihiro Shibata
    • Journal Title

      Proceedings of Machine Learning Research

      Volume: 217 Pages: 275-290

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] MLRegTest: A Benchmark for the Machine Learning of Regular Languages2023

    • Author(s)
      Sam van der Poel, Dakotah Lambert, Kalina Kostyszyn, Tiantian Gao, Rahul Verma, Derek Andersen, Joanne Chau, Emily Peterson, Cody St. Clair, Paul Fodor, Chihiro Shibata, Jeffrey Heinz
    • Journal Title

      arXiv

      Volume: 2304.07687 Pages: 1-38

    • Related Report
      2022 Research-status Report
    • Open Access / Int'l Joint Research
  • [Journal Article] Learning (k,l)-context-sensitive probabilistic grammars with nonparametric Bayesian approach2021

    • Author(s)
      Shibata Chihiro
    • Journal Title

      Machine Learning

      Volume: 7 Issue: 5 Pages: 3267-3301

    • DOI

      10.1007/s10994-021-06034-2

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Pre-training Using Topic Distribution for Character Level Convolutional Neural Networks2020

    • Author(s)
      守屋俊, 柴田千尋
    • Journal Title

      電子情報通信学会論文誌D 情報・システム

      Volume: J103-D Issue: 4 Pages: 280-290

    • DOI

      10.14923/transinfj.2019PDP0004

    • ISSN
      1880-4535, 1881-0225
    • Year and Date
      2020-04-01
    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] How LSTM Encodes Syntax: Exploring Context Vectors and Semi-Quantization on Natural Text2020

    • Author(s)
      Shibata Chihiro、Uchiumi Kei、Mochihashi Daichi
    • Journal Title

      Proceedings of the 28th International Conference on Computational Linguistics

      Volume: 0 Pages: 4033-4043

    • DOI

      10.18653/v1/2020.coling-main.356

    • NAID

      130008052569

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] 超球面上への分布エンコーディングを用いた文書分類2020

    • Author(s)
      守屋俊, 町田秀輔, 柴田千尋
    • Journal Title

      言語処理学会第26回年次大会予稿集

      Volume: None Pages: 1435-1438

    • Related Report
      2019 Research-status Report
    • Open Access
  • [Journal Article] Maximum Likelihood Estimation of Factored Regular Deterministic Stochastic Languages2019

    • Author(s)
      Chihiro Shibata and Jeffrey Heinz
    • Journal Title

      In Proceedings of the 16th Meeting on the Mathematics of Language

      Volume: None Pages: 102-113

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] 構文情報を陽に与えたときの LSTM-RNN による内部表現について2018

    • Author(s)
      岡本(柴田) 千尋,内海 慶,持橋 大地
    • Organizer
      第237回自然言語処理研究会 2018年9月26日 情報処理学会
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi