Project/Area Number |
19740035
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Single-year Grants |
Research Field |
Geometry
|
Research Institution | Osaka City University (2008) Kyoto University (2007) |
Principal Investigator |
|
Project Period (FY) |
2007 – 2008
|
Project Status |
Completed (Fiscal Year 2008)
|
Budget Amount *help |
¥1,510,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥210,000)
Fiscal Year 2008: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2007: ¥600,000 (Direct Cost: ¥600,000)
|
Keywords | braid group / archiral knot / Hecke algebra / link polynomial / 組紐群 / 表現 / Lie群 / 絡み目 / unitary / 稠密 / Vassiliev invariants / Mutants / hyperbolic volume / slice / Graph |
Research Abstract |
15以上の各奇数交点数でのachiralな結び目の構成を完成した. 「行列-不・量-対数は'曲体"で直'的に近'される」という予想を-\'きにδ証明した.BurauとLawrence-Krammer現の稠密性,非自明なJones 多項式の問題と幾何的な性質を持つ閉じた3次組み紐についても研究を行った.
|