A global study of the moduli spaces of abelian varieties over the ring of integers
Project/Area Number |
20340001
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Hokkaido University |
Principal Investigator |
NAKAMUR Iku Hokkaido University, 大学院・理学研究院, 教授 (50022687)
|
Co-Investigator(Renkei-kenkyūsha) |
KATSURADA Hidenori 室蘭工業大学, 大学院・工学研究科, 教授 (80133792)
WENG Lin 九州大学, 大学院・数理学研究院, 教授 (60304002)
|
Project Period (FY) |
2008 – 2010
|
Project Status |
Completed (Fiscal Year 2010)
|
Budget Amount *help |
¥16,770,000 (Direct Cost: ¥12,900,000、Indirect Cost: ¥3,870,000)
Fiscal Year 2010: ¥5,590,000 (Direct Cost: ¥4,300,000、Indirect Cost: ¥1,290,000)
Fiscal Year 2009: ¥5,590,000 (Direct Cost: ¥4,300,000、Indirect Cost: ¥1,290,000)
Fiscal Year 2008: ¥5,590,000 (Direct Cost: ¥4,300,000、Indirect Cost: ¥1,290,000)
|
Keywords | モジュライ / アーベル多様体 / コンパクト化 / 安定性 / マッカイ対応 / 単純特異点 / 既約表現 / ディンキン図形 / 有限群スキーム / レベル構造 / アーペル多様体 / モジュライ空間 / 拡大ディンキン図形 |
Research Abstract |
We proved the following in the theory of moduli of abelian varieties : Theorem : There is another canonical compactification SQ^<toric>_<g,k> of the moduli of abelian varieties different from SQ_<g,k> constructed by us in 1999. Moreover there is a canonical bijectivebirationalmorphism from SQ^<toric>_<g,k> onto SQ_<g,k> which induces the isomorphism of their normalizations. There was also a progress in sharpening the 2-dimensional McKay correspondence, which explains the connection with the extended Dynkin diagram.
|
Report
(4 results)
Research Products
(35 results)