Geometric structure on geometric manifolds which admit Lie group transformations and various Rigidity
Project/Area Number |
20340013
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | Tokyo Metropolitan University |
Principal Investigator |
KAMISHIMA Yoshinobu Tokyo Metropolitan University, 大学院・理工学研究科, 教授 (10125304)
|
Co-Investigator(Kenkyū-buntansha) |
MARTIN GUEST 首都大学東京, 大学院・理工学研究科, 教授 (10295470)
SOMA Teruhiko 首都大学東京, 大学院・理工学研究科, 教授 (50154688)
IMAI Jun 首都大学東京, 大学院・理工学研究科, 准教授 (70221132)
KAMIYA Shigeyasu 岡山理科大学, 工学部, 教授 (80122381)
HASEGAWA Keizo 新潟大学, 人文社会・教育系, 教授 (00208480)
|
Co-Investigator(Renkei-kenkyūsha) |
SAKAI Takashi 首都大学東京, 大学院・理工学研究科, 助教 (30381445)
|
Project Period (FY) |
2008 – 2010
|
Project Status |
Completed (Fiscal Year 2010)
|
Budget Amount *help |
¥6,110,000 (Direct Cost: ¥4,700,000、Indirect Cost: ¥1,410,000)
Fiscal Year 2010: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2009: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2008: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
|
Keywords | 幾何学 / 微分幾何学 / 微分トポロジー / 可解等質空間 / Seifertファイバー空間 / 可微分剛性 / Fefferman / Lorentz構造 / Parabolic構造 / 因果性 / 変換群 / Vague conjecture / Conformal structure / Rigidity / LcK structure / Kaehler structure / Homogeneous manifold / Sasaki manifold / Fefferman-Lorentz structure / CR構造 / 小畠の定理 / ファイバー空間 / 非球形空間 / 基本群 / LCR構造 |
Research Abstract |
We have examined the following projects. (1) Approach from geometry and topology concerning conformally Fefferman-Lorentz manifolds. (1) We proved the analogue of the Obata-Ferrand theorem to Lorentz manifolds. (2) We proved the Kuiper's problem that if the developing map is not surjective on the universal cover of S^<n-1,1>, then it is a covering map onto its image under the existence of causal vector fields. (2) We studied the infrasolv-fiber space structure and the smooth rigidity on the closed aspherical manifolds of the mixed type. As an application, we proved the smooth rigidity of compact aspherical homogeneous manifolds.
|
Report
(4 results)
Research Products
(28 results)