Study of Fuchsian system of differential equations from the view point of algebraic analysis and microlocal analysis
Project/Area Number |
20540191
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Basic analysis
|
Research Institution | Nihon University |
Principal Investigator |
|
Co-Investigator(Renkei-kenkyūsha) |
AOKI Takashi 近畿大学, 理工学部, 教授 (80159285)
HONDA Naofumi 北海道大学, 理学研究院, 准教授 (00238817)
|
Project Period (FY) |
2008 – 2012
|
Project Status |
Completed (Fiscal Year 2012)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2012: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2011: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2010: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2009: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2008: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
|
Keywords | 代数解析学 / 超局所解析学 / 佐藤超函数 / D加群 / D-加群 / 初期値・境界値問題 / 分布・超分布 / 無限階擬微分作用素 / 佐藤超函数D加群 / 初期値,境界値問題 / 分布,超分布 |
Research Abstract |
(1) If we impose an irregularity condition due to N. Honda for a system of analytic linear differential equations (D-Module), we can define non-characteristic initial and boundary values for the corresponding Gevrey function or ultradistribution solutions. Moreover, under a (weak) hyperbolicity condition, we can prove unique solvability theorems for Cauchy and boundary value problems.(2) For any regular-specializable system, we can define general boundary values for extensible distribution or ultradistribution solutions under an irregularity condition due to H. Tahara.(3) By a joint work with T. Aoki and N. Honda, we can establish new cohomological representation and symbol theory for pseudodifferetial operators of infinite order in analytic category.
|
Report
(7 results)
Research Products
(27 results)