Study on integrable systems around the Painleve systems
Project/Area Number |
20740089
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Single-year Grants |
Research Field |
Global analysis
|
Research Institution | The University of Tokyo |
Principal Investigator |
SAKAI Hidetaka 東京大学, 大学院・数理科学研究科, 准教授 (50323465)
|
Project Period (FY) |
2008 – 2011
|
Project Status |
Completed (Fiscal Year 2011)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2011: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2010: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2009: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2008: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
|
Keywords | パンルヴェ方程式 / 差分方程式 / 特殊函数 / 超幾何函数 / 特殊関数 / 超幾何関数 / 相空間 / 4次元 / パンルヴェ型方程式 / フック型方程式 / モノドロミー保存変形 |
Research Abstract |
Results which are obtained in the present project are as follows :(1) A study on ordinary differential equations on rational elliptic surfaces,(2) A classification of 4-dimensional Painleve type equations associated with isomonodromic deformation theory of Fuchsian equations(4 types),(3) A classification of 4-dimensional Painleve type equations obtained from unramified linear equations(22 types)(joint work with H. Kawakami and A. Nakamura),(4) q-analog of Katz's middle convolution(joint work with M. Yamaguchi),(5) A description of Schlesinger transformation obtained by using simplectic structure(joint work with A. Dzhamay and T. Takenawa).
|
Report
(6 results)
Research Products
(16 results)