• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of optimization technique for data compression by predicting global data entropy

Research Project

Project/Area Number 20H04152
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 60040:Computer system-related
Research InstitutionUniversity of Tsukuba

Principal Investigator

Yamagiwa Shinichi  筑波大学, システム情報系, 准教授 (10574725)

Co-Investigator(Kenkyū-buntansha) 河原 吉伸  大阪大学, 大学院情報科学研究科, 教授 (00514796)
和田 耕一  筑波大学, システム情報系, 名誉教授 (30175145)
坂本 比呂志  九州工業大学, 大学院情報工学研究院, 教授 (50315123)
Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥17,420,000 (Direct Cost: ¥13,400,000、Indirect Cost: ¥4,020,000)
Fiscal Year 2022: ¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2021: ¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Keywordsデータ圧縮
Outline of Research at the Start

本研究はロスレス圧縮の最適なエントロピーを圧縮器の制御情報をフィードバックすることで大域的に予測し、最良の圧縮率を常に維持する原理の解明をねらう。従来法にも適用でき、圧縮率が最良で、高速なハードウェアに実装できるロスレス圧縮の新基本理論を創出し、AIチップ等の次世代の計算機システム分野の重点課題を発展に導く。

Outline of Final Research Achievements

This project found a principle that predicts realtime entropy of a continuous data stream based on the occupation ratio of the lookup table in the compressor. The table manages original data to generate the compressed ones. Based on the finding, this project developed a lossless data compressed that shrinks a data unit to a single bit at least. We developed a method called Adaptive Stream-based Entropy Coding. The data entropy predicted by our mechanism follows Shannon's entropy and represents the global data entropy. The experimental results show that ASE Coding invokes the most effective realtime compression. We also developed a hardware-oriented algorithm that compresses/decompresses any continuous data stream in real time. We also demonstrated that the compressor/decompressor is implemented compactly in hardware and works in high speed.

Academic Significance and Societal Importance of the Research Achievements

従来からのデータストリームを扱う圧縮器の内部動作を元にして、局所のエントロピーの変化を監視することで、大域的なエントロピーを求められる原理を解明した。圧縮器に、未来に入力されるデータの傾向を予測して、圧縮器での符号の決定ができれば、局所的なデータの出現傾向に動的に従い、最適な圧縮率を得られるのではないか?という学術的な疑問に対し、その方法を解明した。ハードウェア実装できるアルゴリズムを開発し、ロスレス圧縮方式を開発した。IoTやAIにおける、通信データ量の増大やストレージの小型化といった今後発展していくビッグデータ時代の産業に応用できる。

Report

(4 results)
  • 2023 Final Research Report ( PDF )
  • 2022 Annual Research Report
  • 2021 Annual Research Report
  • 2020 Annual Research Report
  • Research Products

    (8 results)

All 2023 2021 2020

All Journal Article (6 results) (of which Peer Reviewed: 6 results,  Open Access: 4 results) Presentation (2 results) (of which Int'l Joint Research: 2 results)

  • [Journal Article] Performance Enhancement of Stream-Based Decompression Process by Notifying Compression Buffer Size2023

    • Author(s)
      Kato Taiki、Yamagiwa Shinichi、Marumo Koichi
    • Journal Title

      Proceedings of IEEE Symposium on Computers and Communications (ISCC) 2023

      Volume: 1 Pages: 491-494

    • DOI

      10.1109/iscc58397.2023.10218261

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Toward Parallelization Technique for Stream-based Lossless Data Compression2023

    • Author(s)
      Kato Taiki、Yamagiwa Shinichi、Wada Koichi
    • Journal Title

      Proceedings of IEEE International Conference on Big Data 2023

      Volume: 1 Pages: 2667-2672

    • DOI

      10.1109/bigdata59044.2023.10386184

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Stream-Based Visually Lossless Data Compression Applying Variable Bit-Length ADPCM Encoding2021

    • Author(s)
      Yamagiwa Shinichi、Ichinomiya Yuma
    • Journal Title

      Sensors

      Volume: 21 Issue: 13 Pages: 4602-4602

    • DOI

      10.3390/s21134602

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Exception Handling Method Based on Event from Look-Up Table Applying Stream-Based Lossless Data Compression2021

    • Author(s)
      Yamagiwa Shinichi、Marumo Koichi、Kuwabara Suzukaze
    • Journal Title

      Electronics

      Volume: 10 Issue: 3 Pages: 240-240

    • DOI

      10.3390/electronics10030240

    • NAID

      120007190967

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Autonomous Parameter Adjustment Method for Lossless Data Compression on Adaptive Stream-Based Entropy Coding2020

    • Author(s)
      Yamagiwa Shinichi、Kuwabara Suzukaze
    • Journal Title

      IEEE Access

      Volume: 8 Pages: 186890-186903

    • DOI

      10.1109/access.2020.3029705

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Stream-Based Lossless Data Compression Applying Adaptive Entropy Coding for Hardware-Based Implementation2020

    • Author(s)
      Yamagiwa Shinichi、Hayakawa Eisaku、Marumo Koichi
    • Journal Title

      Algorithms

      Volume: 13 Issue: 7 Pages: 159-159

    • DOI

      10.3390/a13070159

    • NAID

      120007183433

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] Performance Enhancement of Stream-Based Decompression Process by Notifying Compression Buffer Size2023

    • Author(s)
      Taiki Kato, Shinichi Yamagiwa
    • Organizer
      IEEE Symposium on Computers and Communications (ISCC) 2023
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Toward Parallelization Technique for Stream-based Lossless Data Compression2023

    • Author(s)
      Kato Taiki、Yamagiwa Shinichi、Wada Koichi
    • Organizer
      IEEE International Conference on Big Data 2023
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi