Project/Area Number |
20K03972
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 15010:Theoretical studies related to particle-, nuclear-, cosmic ray and astro-physics
|
Research Institution | Nara Women's University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
岸本 功 山陽小野田市立山口東京理科大学, 共通教育センター, 准教授 (60399433)
関 穣慶 大阪公立大学, 大学院理学研究科, 数学研究所専任研究所員 (60373320)
|
Project Period (FY) |
2020-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | 弦理論 / 二点散乱振幅 / BRST形式 / 降下方程式 / ディラトン1点関数 / 閉弦頂点演算子 / 閉弦2点振幅 / 弦の場の理論 / Dブレーン / BRST不変性 / ループ振幅 / 素粒子論 / Veneziano振幅 / 数値解 / 超対称性 / 非線形シグマ模型 / 連続ビラソロ代数 / タキオン真空 |
Outline of Research at the Start |
開弦の場の理論における閉弦の記述方法を確立し、そこから理論の構造を理解することによって、膨張宇宙や時空のコンパクト化に関わる閉弦のダイナミクスを明らかにしていくことが本研究の目的である。さらに、弦の場の理論の研究を通じて、弦理論におけるゲージ対称性の構造、弦理論の背後にある指導原理の全容を明らかにし、素粒子物理学における統一理論および重力の量子論の研究を進展させることを目指す研究である。
|
Outline of Final Research Achievements |
We have proposed that two-point scattering amplitudes in string theory can be calculated using an operator formalism with BRST symmetry. In this calculation method, we introduced a new concept called the mostly BRST exact operator, and showed that this operator works well not only for two-point scattering amplitudes but also for the calculation of general scattering amplitudes.
In the study of two-point amplitudes of closed strings, we clarified the relationship between closed string vertex operators and descent equations, and succeeded in extending the conventional vertex operators. Using these extended vertex operators, we showed that it is possible to calculate the one-point function of the dilaton, revealing that although it is a local operator, it yields the Euler characteristic as a global contribution.
|
Academic Significance and Societal Importance of the Research Achievements |
弦理論における2点散乱振幅は、ゲージ固定されない自由度が残るためゼロになると数十年間信じられてきた。BRST形式を用いてこの2点振幅が有限の値として得られることが明らかになったことで、このドグマが覆されたのであり、学術的意義は非常に大きいと言える。また、この研究を通じて、mostly BRST exact演算子という新しい概念が導入され、閉弦頂点演算子と降下方程式との関係が解明された。これらの新たな考え方は、開弦の場の理論における閉弦のダイナミクスの研究に役立つことが期待される成果である。
|