• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A comprehensive analysis on the inverse problem of determining unknown coefficients of a differential equation which is a basis of a tomographic technology

Research Project

Project/Area Number 20K14344
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionKyoto University

Principal Investigator

Kawagoe Daisuke  京都大学, 情報学研究科, 助教 (30848073)

Project Period (FY) 2020-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2023: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Keywords逆問題解析 / 偏微分方程式論 / 積分方程式 / 数値解析 / スペクトル解析
Outline of Research at the Start

本研究課題は, 次世代の非侵襲的断層撮影技術である拡散光トモグラフィ(Diffuse Optical Tomography (DOT)) に対する申請者の提案手法の実用化に向けた数学解析である. 申請者はこれまでに, DOT に関連する逆問題に対して実現可能と思われる解法を提案しており, 本研究課題では数値実験により申請者の逆問題解法の実現可能性を議論する. メタマテリアルを利用した観測データの高解像化を並行して検討するが, その前段階としてメタマテリアルと関連する境界積分作用素のスペクトルの解析に取り組む. これらの解析には2つの数理モデルが現れるが, それらの定量的な対応づけにも取り組む.

Outline of Final Research Achievements

This research project is a mathematical and numerical analysis aimed at the realization of Diffuse Optical Tomography (DOT), which is a next-generation non-invasive tomographic technique. The applicant has proposed an analytical method to solve an inverse problem to determine a coefficient of an integro-differential equation which is a mathematical model of DOT. He discussed the feasibility of this method through numerical experiments during the period. It was confirmed at the level of numerical experiments that the method works at least when the scattering effect is small (or the diameter of the domain is small) in two or three dimensional convex domains.

Academic Significance and Societal Importance of the Research Achievements

DOT は, 近赤外光の生体に対する光学特性を利用した次世代の非侵襲的断層撮影技術であり, 医学的なメリットからその実現が期待されている. しかしながら, X 線や強磁場とは異なり, 生体内における近赤外光の伝播は散乱を伴うため, その実現が困難となっている. DOT は輸送方程式と呼ばれる微分積分方程式の係数決定逆問題と数理モデル化される. この係数決定逆問題に対して純粋数学的な観点からは多くの研究がなされてきたが, DOT の実現に繋がる解法は提案されてこなかった. 本研究課題は, 理論と応用とを結ぶ新たな学術の発露を担っている.

Report

(5 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • Research Products

    (20 results)

All 2025 2024 2023 2022 2021 Other

All Int'l Joint Research (3 results) Journal Article (3 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 2 results) Presentation (13 results) (of which Int'l Joint Research: 9 results,  Invited: 7 results) Funded Workshop (1 results)

  • [Int'l Joint Research] National Taiwan University(中国)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Inha University/UNIST(韓国)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Universite Grenoble-Alpes(フランス)

    • Related Report
      2023 Annual Research Report
  • [Journal Article] Geometric effects on W^{1, p} regularity of the stationary linearized Boltzmann equation2025

    • Author(s)
      I-Kun Chen, Chun-Hsiung Hsia, Daisuke Kawagoe and Jhe-Kuan Su
    • Journal Title

      Indiana University Mathematics Journal

      Volume: -

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Tomography from Scattered Signals Obeying the Stationary Radiative Transport Equation2023

    • Author(s)
      Chen I-Kun、Fujiwara Hiroshi、Kawagoe Daisuke
    • Journal Title

      Proceedings of Practical Inverse Problems and Their Prospects, Mathematics for Industry

      Volume: 37 Pages: 27-46

    • DOI

      10.1007/978-981-99-2408-0_3

    • ISBN
      9789819924073, 9789819924080
    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] 不連続性にもとづく散乱信号からのトモグラフィの数値的実現2022

    • Author(s)
      藤原宏志,川越大輔,陳逸昆
    • Journal Title

      計算工学講演会論文集

      Volume: 27

    • Related Report
      2022 Research-status Report
  • [Presentation] 解の不連続性を利用する3次元散乱信号からのトモグラフィの数値的試み2023

    • Author(s)
      藤原宏志, 川越大輔, 大石直也
    • Organizer
      第28回計算工学講演会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Essential spectrum of elastic Neumann-Poincare operators with a corner2023

    • Author(s)
      Daisuke Kawagoe
    • Organizer
      10th International Congress on Industrial and Applied Mathematics
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 定常移流方程式に対する楕円型正則化の収束率2023

    • Author(s)
      今川真城, 川越大輔
    • Organizer
      日本数学会2023年度秋季総合分科会
    • Related Report
      2023 Annual Research Report
  • [Presentation] On convergence rates of an elliptic regularization applied to a stationary advection equation2023

    • Author(s)
      Daisuke Kawagoe
    • Organizer
      2023 NCTS PDE Conference on Recent Development of Fluid Dynamics and Kinetic Theory
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Nonexistence of multi-dimensional solitary waves for the Euler-Poisson system2023

    • Author(s)
      川越大輔, Junsik Bae
    • Organizer
      非線形波動から可積分系へ2023
    • Related Report
      2023 Annual Research Report
  • [Presentation] A remark on the generalized convexity condition and propagation of boundary-induced discontinuity in stationary radiative transfer2023

    • Author(s)
      Daisuke Kawagoe
    • Organizer
      RIMS 共同研究 (公開型) 逆問題と医用イメージングとその周辺
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On convergence rates of an elliptic regularization with the Neumann boundary condition applied to a stationary advection equation2022

    • Author(s)
      Daisuke Kawagoe
    • Organizer
      Workshop for young scholars Control and inverse problems on waves, oscillations and flows -Mathematical analysis and computational methods-
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] ひかりトモグラフィのための定常輻射輸送方程式の解の不連続性の解析2022

    • Author(s)
      川越 大輔, 藤原 宏志, 陳 逸昆
    • Organizer
      2022年度応用数学合同研究集会
    • Related Report
      2022 Research-status Report
  • [Presentation] Propagation of boundary-induced discontinuity in stationary radiative transfer and its application to the optical tomography2022

    • Author(s)
      Daisuke Kawagoe
    • Organizer
      RIMS Workshop on “Theory and practice in inverse problems”
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On polynomial compactness of the elastic Neumann-Poincar\'e operator on C^{1,\alpha} boundaries in three dimensions2022

    • Author(s)
      Daisuke Kawagoe
    • Organizer
      Mini-Workshop on Mathematical Analysis and Related Topics
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Propagation of boundary-induced discontinuity in stationary radiative transfer and its application to the optical tomography2022

    • Author(s)
      Daisuke Kawagoe
    • Organizer
      Practical inverse problems and their prospects
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] W^{1, p} estimate of solutions to the stationary transport equation with the incoming boundary condition2021

    • Author(s)
      Daisuke Kawagoe
    • Organizer
      Workshop for young scholars Control and inverse problems on waves, oscillations and flows -Mathematical analysis and computational methods-
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On polynomial compactness of elastic Neumann-Poincar\'e operators on C^{1,\alpha} boundaries in three dimensions2021

    • Author(s)
      Daisuke Kawagoe
    • Organizer
      The Third Russia-Japan Workshop "Mathematical analysis of fracture phenomena for elastic structures and its applications" - 21st Conference of Continuum Mechanics Focusing on Singularities (CoMFoS21)
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Funded Workshop] RIMS共同研究(公開型)非適切問題に対する諸アプローチ-理論と実践-2024

    • Related Report
      2023 Annual Research Report

URL: 

Published: 2020-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi