Project/Area Number |
22K20484
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0401:Materials engineering, chemical engineering, and related fields
|
Research Institution | Waseda University |
Principal Investigator |
|
Project Period (FY) |
2022-08-31 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2023: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2022: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 亜酸化窒素 / 触媒分解 / 電場触媒反応 / 環境触媒 / 一酸化二窒素 / N2O分解 |
Outline of Research at the Start |
本研究提案は「酸素共存下の低温N2O直接分解プロセスの実現・確立」を目指すものである。亜酸化窒素(N2O)はCO2の約300倍の強い温室効果を示すため、排出量の低減化が求められている。しかしながら、共存酸素によって触媒作用が阻害されるため、酸素共存下でのN2O直接分解反応の研究例は少ない。そこで本研究で提案する手法は、電場アシストにより触媒上に活性酸素種を形成しN2Oと反応させることで、N2Oを選択的にN2とO2に分解することを狙う。本研究により、酸素共存下において低温かつ極めて小さな消費エネルギーでN2Oの直接分解を実現することで、地球温暖化抑制に貢献する。
|
Outline of Final Research Achievements |
Nitrous oxide (N2O) has significant impacts on global warming and environmental degradation. Various catalytic methods have been explored for reducing N2O. We studied a catalytic system in an electric field, discovering that N2O can be decomposed efficiently, even at low temperatures and with excess oxygen and water vapor present. We examined reaction mechanisms with and without an electric field using kinetics and various operando analyses, revealing that the decomposition of N2O is expedited by the transfer of oxygen from the Ce0.7Zr0.3O2 support. Specifically, N2O reacts with the oxygen adsorbed onto the Rh oxide surface when an electric field is applied.
|
Academic Significance and Societal Importance of the Research Achievements |
N2OはCO2の約300倍の強い温室効果を示すため、排出量の低減化が求められている。しかしながら、過剰な共存酸素や水蒸気によって触媒作用が阻害されるため、共存ガス下かつ低温でのN2O直接分解反応は極めて困難であった。本研究では、過剰酸素雰囲気下のN2O直接分解に対して電場をアシストすることで、従来課題とされていた共存酸素や吸着酸素を能動的に制御し、著しく反応を低温化できることを示した。さらに本研究のメカニズム解明を通じて、電場アシスト効果を明確にし、より優れた触媒の設計開発や、その他の電場アシストを利用した反応系への応用・展開が期待される。
|