• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of a novel method for prediction using artificial image and image identification

Research Project

Project/Area Number 22K21186
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0908:Society medicine, nursing, and related fields
Research InstitutionFujita Health University

Principal Investigator

He Yupeng  藤田医科大学, 医学部, 助教 (00953267)

Project Period (FY) 2022-08-31 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2023: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2022: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
KeywordsArtificial image / 人工画像 / 疫学研究 / 予測モデル / 機械学習 / Model performance / Prediction / Epidemiology / Feature sequence / Artifical image / Prediction method / 1
Outline of Research at the Start

This study consists of artificial images generation and optimal pattern verification. Medical data are transformed as pixel values to reversely generate artificial images by series of patterns. Labeling the images with the target disease, the processed dataset is divided into training set and test set. The classifier (trained by training set) which has the highest accuracy (tested by test set) is the optimal prediction model, and the corresponding pattern is the optimal pattern. The optimal pattern is used to generate images to realize the visualization of the medical data.

Outline of Final Research Achievements

A novel method using artificial image was developed to enhance the model precision in epidemiology study. The concept was inspired from image identification. Pixels in digital images are used as features when training the identification model. The order-related relationship is assumed to exist in epidemiological data. Given a certain dataset, features are transformed to pixel values for generating artificial images. Orders of pixels are randomly permutated and the model is trained using pixel-permutated artificial image sample sets. In the preliminary experiment, one binary response was designed to be predicted by 76 features. 10,000 artificial image sample sets were randomly selected for model training. Models’ performance (area under the receiver operating characteristic curve values) depicted a bell-shaped distribution. Namely, feature order information had a strong impact on model performance. Our novel model construction strategy has potential to enhance model predictability.

Academic Significance and Societal Importance of the Research Achievements

従来の疫学研究でよく使われる線形モデルと比較して、本研究で開発した新手法は、特徴を2次元人工画像の形式で配置することで、1)モデルの精度を向上させる。2)複数の特徴間の交絡要因を究明できる。3)ブラックボックスのような機械学習モデルを視覚的に説明できる。4)特徴の位置を使用して特徴の重要性を説明する。5)疫学調査以外の順序不特定のデータの分析に活用できる。

Report

(3 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • Research Products

    (4 results)

All 2024 2023

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (2 results) (of which Int'l Joint Research: 1 results) Patent(Industrial Property Rights) (1 results)

  • [Journal Article] Can feature structure improve model’s precision? A novel prediction method using artificial image and image identification2024

    • Author(s)
      He Yupeng、Sun Qiwen、Matsunaga Masaaki、Ota Atsuhiko
    • Journal Title

      JAMIA Open

      Volume: 7 Issue: 1

    • DOI

      10.1093/jamiaopen/ooae012

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] Development of a novel method for prediction using artificial image and image identification2024

    • Author(s)
      He Yupeng, Matsunaga Masaaki, Ota Atsuhiko
    • Organizer
      The 34th Annual Scientific Meeting of the Japan Epidemiological Association Registration
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Does the Feature Order Affect the Performance of Artificial Neural Network Model? A classifier for the existence of schizophrenia based on a Japanese online survey (特徴量の順序は人工ニューラルネットワークモデルの性能に影響するか? 日本のオンライン調査に基づく統合失調症有無の分類)2023

    • Author(s)
      He Yupeng
    • Organizer
      第9回藤田医科大学学内研究シーズ・ニーズ発表交流会
    • Related Report
      2022 Research-status Report
  • [Patent(Industrial Property Rights)] 人工画像データ生成装置、予測装置、人工画像データ生成方法、予測方法、及びプログラム2023

    • Inventor(s)
      He Yupeng
    • Industrial Property Rights Holder
      藤田学園
    • Industrial Property Rights Type
      特許
    • Filing Date
      2023
    • Related Report
      2023 Annual Research Report

URL: 

Published: 2022-09-01   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi