Noncommutative Solitons and application to string theory and integrable systems
Project/Area Number |
23740182
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Particle/Nuclear/Cosmic ray/Astro physics
|
Research Institution | Nagoya University |
Principal Investigator |
|
Project Period (FY) |
2011-04-28 – 2016-03-31
|
Project Status |
Completed (Fiscal Year 2015)
|
Budget Amount *help |
¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2014: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2013: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2012: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2011: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | ソリトン / インスタントン / 可積分系 / ツイスター理論 / 非可換幾何 / ADHM構成法 / モノポール / ハイパーケーラー計量 / 反自己双対ヤン・ミルズ方程式 / Normal form / Quasideterminant / ハイパーケーラー幾何学 |
Outline of Final Research Achievements |
We have studied solitons in noncommutative spaces. In particular, we have mostly proved a reciprocity in the ADHM construction of noncommutative instantons. Furthermore, by examining algebraic properties of quasideterminants, we clarified mathematical structure of the noncommutative soliton equations. We also discussed significance of noncommutative extension of them.
|
Report
(6 results)
Research Products
(37 results)