• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Geometries of spaces on which Spinor groups act.

Research Project

Project/Area Number 24540101
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionMeijo University

Principal Investigator

HASHIMOTO Hideya  名城大学, 理工学部, 教授 (60218419)

Co-Investigator(Renkei-kenkyūsha) EJIRI Norio  名城大学, 理工学部, 教授 (80145656)
MASHIMO Katsuya  法政大学, 理工学部, 教授 (50157187)
Research Collaborator OHASHI Misa  
Project Period (FY) 2012-04-01 – 2015-03-31
Project Status Completed (Fiscal Year 2014)
Budget Amount *help
¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2014: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2013: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2012: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Keywordsケーリー代数 / 例外型単純リー群G2 / スピノール群 / グラスマン幾何学 / Stiefel多様体 / fibre bundle structure / Maurer Cartan form / Moduli 空間 / 例外群 / 合同類 / ホロノミー群 / 等経超曲面 / 不変部分多様体 / クリフォード群 / spinor群 / 概複素構造 / Grassmann多様体 / 幾何構造 / Clifford algebra / 例外型単純リー群G2 / Spin(7) / グラスマン多様体 / 自己同型群 / 変形理論
Outline of Final Research Achievements

We investigate the real Stiefel manifolds Vk(Rn) = SO(n)/SO(n- k) for n=7 or n=8. If we identify R7 and R8 with purely imaginary octonions and octonions, respectively, then some real Stiefel manifolds can be represented as V2(R7) = G2/SU(2), V2(R8) = Spin(7)/SU(3), and V3(R8) = Spin(7)/SU(2). Therefore each real Stiefel manifold of this type can be represented as an orbit of the action of the Lie group G2 or Spin(7). In our study, we give the orbit decompositions of the other Stiefel manifolds related to the octonions under the action of Lie group G2 and Spin(7). Then we obtain new fibre bundle structures of some real Stiefel manifolds. From these facts, we obtain the difference between the SO(n)-geometries and G2, Spin(7)-geometries.

Report

(4 results)
  • 2014 Annual Research Report   Final Research Report ( PDF )
  • 2013 Research-status Report
  • 2012 Research-status Report
  • Research Products

    (12 results)

All 2015 2014 2013 2012

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (10 results) (of which Invited: 9 results)

  • [Journal Article] On geometrical structures on $S^3 \times S^3$ in the octonion2014

    • Author(s)
      Hideya Hashimoto and Misa Ohashi
    • Journal Title

      Proceedings of the 3rd International Colloquium on Differential geometry and its related fields

      Volume: 未定

    • Related Report
      2012 Research-status Report
    • Peer Reviewed
  • [Journal Article] On geometric structures on S^3×S^3 in the octonions2013

    • Author(s)
      Hashimoto, Hideya; Ohashi, Misa
    • Journal Title

      Prospects of Differential geometry and its related fields

      Volume: 1 Pages: 145-153

    • Related Report
      2013 Research-status Report
    • Peer Reviewed
  • [Presentation] Octonions に関連した Stiefel manifolds の G2, Spin(7) 軌道分解 とその応用2015

    • Author(s)
      橋本英哉,大橋美佐
    • Organizer
      日本数学会幾何学分科会
    • Place of Presentation
      明治大学
    • Year and Date
      2015-03-21 – 2015-03-24
    • Related Report
      2014 Annual Research Report
  • [Presentation] 3次Clifford環とOctonion2015

    • Author(s)
      橋本英哉
    • Organizer
      淡路島幾何学研究集会2015
    • Place of Presentation
      鹿野松原荘
    • Year and Date
      2015-01-23 – 2015-01-25
    • Related Report
      2014 Annual Research Report
    • Invited
  • [Presentation] Some applications of Clifford algebras and Octonions to Differential geometry2014

    • Author(s)
      橋本英哉
    • Organizer
      International Conference on Recent Advances in Pure and Applied Mathematics
    • Place of Presentation
      Turkish
    • Year and Date
      2014-11-06 – 2014-11-09
    • Related Report
      2014 Annual Research Report
    • Invited
  • [Presentation] On some constructions of G2 and Spin(7) bundles on a 3-manifold by using Clifford algebra of order 32014

    • Author(s)
      橋本英哉
    • Organizer
      4th International Colloquium on Differential Geometry and its Related Fields
    • Place of Presentation
      St. Cyril and St. Methodius University of Veliko Tarnovo
    • Year and Date
      2014-08-08 – 2014-08-12
    • Related Report
      2014 Annual Research Report
    • Invited
  • [Presentation] Octonionに関連した実Stiefel多様体のG2, Spin(7)軌道分解とその剰余空間について2014

    • Author(s)
      橋本 英哉
    • Organizer
      淡路島幾何学研究集会2014
    • Place of Presentation
      慶野松原荘
    • Related Report
      2013 Research-status Report
    • Invited
  • [Presentation] Octonion内の6次元部分多様体の自己同型群2013

    • Author(s)
      橋本 英哉
    • Organizer
      若狭三方幾何学研究集会
    • Place of Presentation
      若狭町観光ホテル水月花
    • Related Report
      2013 Research-status Report
    • Invited
  • [Presentation] ケーリー代数内の6次元部分多様体上の幾何構造とCalabi-Bryant公式2013

    • Author(s)
      橋本 英哉
    • Organizer
      福島幾何学研究集会
    • Place of Presentation
      福島大学
    • Related Report
      2013 Research-status Report
    • Invited
  • [Presentation] On group of automorphisms of 6-submanifolds in the octonions and its applications2013

    • Author(s)
      橋本 英哉
    • Organizer
      International workshop on special geometry and minimal submanifolds
    • Place of Presentation
      東北大学
    • Related Report
      2013 Research-status Report
    • Invited
  • [Presentation] $M^6 \subset{\mathbf O}$ の automorphism group2013

    • Author(s)
      橋本英哉
    • Organizer
      若狭三方幾何学研究集会2013
    • Place of Presentation
      若狭町観光ホテル水月花
    • Related Report
      2012 Research-status Report
    • Invited
  • [Presentation] G2とSpin(7)のある類似性2012

    • Author(s)
      橋本英哉
    • Organizer
      大阪市大OCU48セミナー
    • Place of Presentation
      大阪市立大学
    • Related Report
      2012 Research-status Report
    • Invited

URL: 

Published: 2013-05-31   Modified: 2019-07-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi