• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Theory and application of optimality-guaranteed screening methods for big-data analysis

Research Project

Project/Area Number 26280083
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypePartial Multi-year Fund
Section一般
Research Field Intelligent informatics
Research InstitutionNagoya Institute of Technology

Principal Investigator

takeuchi ichiro  名古屋工業大学, 工学(系)研究科(研究院), 教授 (40335146)

Co-Investigator(Kenkyū-buntansha) 烏山 昌幸  名古屋工業大学, 工学(系)研究科(研究院), 助教 (40628640)
畑埜 晃平  九州大学, 学内共同利用施設等, 准教授 (60404026)
Project Period (FY) 2014-04-01 – 2017-03-31
Project Status Completed (Fiscal Year 2016)
Budget Amount *help
¥16,250,000 (Direct Cost: ¥12,500,000、Indirect Cost: ¥3,750,000)
Fiscal Year 2016: ¥5,460,000 (Direct Cost: ¥4,200,000、Indirect Cost: ¥1,260,000)
Fiscal Year 2015: ¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2014: ¥5,850,000 (Direct Cost: ¥4,500,000、Indirect Cost: ¥1,350,000)
Keywords機械学習 / ビッグデータ / スクリーニング / 凸最適化 / パターンマイニング / 最適保障計算 / 高速感度分析
Outline of Final Research Achievements

It is often difficult to apply advanced machine learning methods to big data. In such a case, a common approach is to screen out some features and/or instances before the data is fed into machine learning algorithms. Existing screening methods are heuristics in the sense that there is no guarantee that the features and/or instances screened out by the methods are truly irrelevant. In this study, we investigated theory and application of new approach called optimality-guaranteed screening (it is also called safe screening in the literature). We obtained three significant results. The first result is the application of optimality-guaranteed screening to machine learning problems in dynamic environments. The second result is the extension of the scope of optimality-guaranteed screening to the field of pattern mining. The third result is the development of a new method for optimality-guaranteed screening that enables us to screen out features and instances simultaneously.

Report

(4 results)
  • 2016 Annual Research Report   Final Research Report ( PDF )
  • 2015 Annual Research Report
  • 2014 Annual Research Report
  • Research Products

    (22 results)

All 2016 2015 2014

All Journal Article (6 results) (of which Peer Reviewed: 6 results,  Open Access: 4 results,  Acknowledgement Compliant: 4 results) Presentation (15 results) (of which Int'l Joint Research: 6 results,  Invited: 2 results) Book (1 results)

  • [Journal Article] Homotopy continuation approaches for robust SV classification and regression2016

    • Author(s)
      S. Suzumura, K. Ogawa, M. Karasuyama, M. Sugiyama, I. Takeuchi
    • Journal Title

      Machine Learning

      Volume: - Issue: 7 Pages: 1-30

    • DOI

      10.1007/s10994-017-5627-7

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] Secure approximation guarantee for cryptographically private empirical risk minimization2016

    • Author(s)
      T. Takada, H. Hanada, Y. Yamada, J. Sakuma, I. Takeuchi
    • Journal Title

      Proceedings of the 8th Asian Conference on Machine Learning (ACML)

      Volume: 63 Pages: 126-141

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] Safe Pattern Pruning: An Efficient Approach for Predictive Pattern Mining2016

    • Author(s)
      Nakagawa K., Suzumura S., Karasuyama M., Tsuda, K.,Takeuchi I.
    • Journal Title

      Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

      Volume: NA Pages: 1785-1794

    • DOI

      10.1145/2939672.2939844

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] Simultaneous safe screening of features and samples in doubly sparse modeling2016

    • Author(s)
      A. Shibagaki, M. Karasuyama, K. Hatano, I. Takeuchi
    • Journal Title

      Proceedings of the 33rd International Conference on Machine Learning

      Volume: 48 Pages: 1577-1586

    • NAID

      40020907513

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] Proceedmgs of Regularization Path of Cross-Validation Error Lower Bounds2015

    • Author(s)
      Shibagaki A., Suzuki Y., Karasuyama M., Takeuchi I.
    • Journal Title

      The 29th Annual Conference on Neural Information Processing Systems (NIPS2015)

      Volume: 0 Pages: 0-0

    • Related Report
      2015 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Proceedmgs of Quick sensitivity analysis for incremental data modification and its application to leave-one-out CV in linear classification problems2015

    • Author(s)
      Okumura S., Suzuki Y., Takeuchi I.
    • Journal Title

      The 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD2015)

      Volume: 0 Pages: 0-0

    • DOI

      10.1145/2783258.2783347

    • Related Report
      2015 Annual Research Report
    • Peer Reviewed
  • [Presentation] 区間データに対する経験損失最小化とそのプライバシー保護への応用2016

    • Author(s)
      花田博幸, 高田敏行, 柴垣篤志, 佐久間淳, 竹内一郎
    • Organizer
      電子情報通信学会第27回情報論的学習理論研究会
    • Place of Presentation
      京都
    • Year and Date
      2016-11-17
    • Related Report
      2016 Annual Research Report
  • [Presentation] 高次元分類問題のためのSelective Inference2016

    • Author(s)
      梅津佑太, 中川和也, 津田宏治, 竹内一郎
    • Organizer
      電子情報通信学会第27回情報論的学習理論研究会
    • Place of Presentation
      京都
    • Year and Date
      2016-11-16
    • Related Report
      2016 Annual Research Report
  • [Presentation] Secure approximation guarantee for cryptographically private empirical risk minimization2016

    • Author(s)
      T. Takada, H. Hanada, Y. Yamada, J. Sakuma, I. Takeuchi
    • Organizer
      The 8th Asian Conference on Machine Learning (ACML)
    • Place of Presentation
      Hamilton, New Zealand
    • Year and Date
      2016-11-15
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research
  • [Presentation] スパースモデリングのためのセーフスクリーニングとその応用2016

    • Author(s)
      竹内一郎
    • Organizer
      2016年度統計関連学会連合大会
    • Place of Presentation
      金沢
    • Year and Date
      2016-09-07
    • Related Report
      2016 Annual Research Report
    • Invited
  • [Presentation] パターンマイニング問題におけるセーフパターンプルーニングを用いたスパースモデルの学習2016

    • Author(s)
      中川和也, 鈴村真矢, 烏山昌幸, 津田宏治, 竹内一郎
    • Organizer
      電子情報通信学会第26回情報論的学習理論研究会
    • Place of Presentation
      富山
    • Year and Date
      2016-09-05
    • Related Report
      2016 Annual Research Report
  • [Presentation] Safe Pattern Pruning: An Efficient Approach for Predictive Pattern Mining2016

    • Author(s)
      Nakagawa K., Suzumura S., Karasuyama M., Tsuda, K.,Takeuchi I.
    • Organizer
      The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
    • Place of Presentation
      San Francisco, USA
    • Year and Date
      2016-08-17
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research
  • [Presentation] スパースモデルのための特徴と標本の同時セーフスクリーニング2016

    • Author(s)
      柴垣篤志, 烏山昌幸, 畑埜晃平, 竹内一郎
    • Organizer
      電子情報通信学会第25回情報論的学習理論研究会
    • Place of Presentation
      沖縄
    • Year and Date
      2016-07-06
    • Related Report
      2016 Annual Research Report
  • [Presentation] Simultaneous safe screening of features and samples in doubly sparse modeling2016

    • Author(s)
      A. Shibagaki, M. Karasuyama, K. Hatano, I. Takeuchi
    • Organizer
      The 33rd International Conference on Machine Learning
    • Place of Presentation
      New York, USA
    • Year and Date
      2016-06-22
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Safe Feature/Sample Screening and Its Applications to High-order Interaction Modeling and Quick Sensitivity Analysis2016

    • Author(s)
      I. Takeuchi
    • Organizer
      The First Korea-Japan Machine Learning Symposium
    • Place of Presentation
      Seoul, Korea
    • Year and Date
      2016-06-02
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Regularization Path of Cross-Validation Error Lower Bounds2015

    • Author(s)
      Shibagaki A., Suzuki Y., Karasuyama M., Takeuchi I.
    • Organizer
      The 29th Annual Conference on Neural Information Processing Systems (NIPS2015)
    • Place of Presentation
      モントリオールカナダ国際会議場
    • Year and Date
      2015-12-08
    • Related Report
      2015 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Quick sensitivity analysis for incremental data modification and its application to leave-one-out CV in linear classification problems2015

    • Author(s)
      Okumura S., Suzuki Y., Takeuchi I.
    • Organizer
      The 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD2015)
    • Place of Presentation
      ヒルトン シドニー
    • Year and Date
      2015-08-13
    • Related Report
      2015 Annual Research Report
    • Int'l Joint Research
  • [Presentation] セーフスクリーニングを用いた組み合わせ効果を持つスパースモデルの効率的学習2015

    • Author(s)
      中川和也・鈴村真矢・烏山昌幸・竹内一郎
    • Organizer
      電子情報通信学会IBISML研究会
    • Place of Presentation
      沖縄科学技術大学院大学
    • Year and Date
      2015-06-23
    • Related Report
      2015 Annual Research Report
  • [Presentation] 高次交互作用モデルのためのSelective Inference2015

    • Author(s)
      鈴村真矢・中川和也・津田宏治・竹内一郎
    • Organizer
      電子情報通信学会IBISML研究会
    • Place of Presentation
      沖縄科学技術大学院大学
    • Year and Date
      2015-06-23
    • Related Report
      2015 Annual Research Report
  • [Presentation] L2正則化凸損失関数最小化問題のための 検証誤差近似保証付きモデル選択2015

    • Author(s)
      柴垣篤志、鈴木良規、竹内一郎
    • Organizer
      IBISML研究会
    • Place of Presentation
      京都大学
    • Year and Date
      2015-03-05
    • Related Report
      2014 Annual Research Report
  • [Presentation] 二次正則化分類学習のためのLeave-one-out cross-validation の高速化2014

    • Author(s)
      奥村翔太、鈴木良規、小川晃平, 新村祐紀, 竹内一郎
    • Organizer
      IBISワークショップ
    • Place of Presentation
      名古屋大学
    • Year and Date
      2014-11-18
    • Related Report
      2014 Annual Research Report
  • [Book] サポートベクトルマシン2015

    • Author(s)
      竹内一郎・烏山昌幸
    • Total Pages
      192
    • Publisher
      講談社
    • Related Report
      2015 Annual Research Report

URL: 

Published: 2014-04-04   Modified: 2018-03-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi