研究課題/領域番号 |
15K04775
|
研究種目 |
基盤研究(C)
|
配分区分 | 基金 |
応募区分 | 一般 |
研究分野 |
代数学
|
研究機関 | 琉球大学 (2017) 山形大学 (2015-2016) |
研究代表者 |
三枝崎 剛 琉球大学, 教育学部, 准教授 (60584068)
|
研究期間 (年度) |
2015-04-01 – 2018-03-31
|
研究課題ステータス |
完了 (2017年度)
|
配分額 *注記 |
4,680千円 (直接経費: 3,600千円、間接経費: 1,080千円)
2017年度: 1,560千円 (直接経費: 1,200千円、間接経費: 360千円)
2016年度: 1,560千円 (直接経費: 1,200千円、間接経費: 360千円)
2015年度: 1,560千円 (直接経費: 1,200千円、間接経費: 360千円)
|
キーワード | 符号 / 格子 / 頂点作用素代数 / マトロイド / 保型形式 / 重さ多項式 / タット多項式 / 高種数化 / サイクル多項式 / マシュームーンシャイン / 擬テータ関数 / 群論 |
研究成果の概要 |
符号・格子・頂点作用素代数という,互いに密接な関係を持つ数学的対象がある.3者は類似した性質を数多く持ち,例えば最小距離やt-デザインという概念が,それぞれに定義されている.特に符号はもともと情報伝達の手段,効率化を目的に導入された概念であり,実生活にも幅広い応用を持つ.従って3者の分類問題は,実生活への応用上も,数学的にも面白い重要な問題である.本研究の目的は,これら3者の分類に向けて,それぞれの数学的性質(最小距離やt-デザイン)を明らかにした.
|