研究課題/領域番号 |
17204002
|
研究種目 |
基盤研究(A)
|
配分区分 | 補助金 |
応募区分 | 一般 |
研究分野 |
代数学
|
研究機関 | 大阪大学 |
研究代表者 |
伊吹山 知義 大阪大学, 大学院・理学研究科, 教授 (60011722)
|
研究分担者 |
齋藤 恭司 東京大学, 数物連携宇宙研究機構, 特任教授 (20012445)
坂内 英一 九州大学, 数理学研究院, 教授 (10011652)
渡部 隆夫 大阪大学, 大学院・理学研究科, 教授 (30201198)
永友 清和 大阪大学, 大学院・情報科学研究科, 准教授 (90172543)
織田 孝幸 東京大学, 大学院・数理科学研究科, 教授 (10109415)
長岡 昇勇 近畿大学, 理工学部, 教授 (20164402)
小松 啓一 早稲田大学, 理工学術院, 教授 (80092550)
菅野 孝史 金沢大学, 数物科学系, 教授 (30183841)
池田 保 京都大学, 大学院・理学研究科, 教授 (20211716)
古澤 昌秋 大阪市立大学, 大学院・理学研究科, 教授 (50294525)
桂田 英典 室蘭工業大学, 工学部, 教授 (80133792)
梅垣 敦紀 早稲田大学, 高等研究所, 客員准教授 (60329109)
|
研究期間 (年度) |
2005 – 2008
|
研究課題ステータス |
完了 (2008年度)
|
配分額 *注記 |
22,750千円 (直接経費: 17,500千円、間接経費: 5,250千円)
2008年度: 5,850千円 (直接経費: 4,500千円、間接経費: 1,350千円)
2007年度: 5,070千円 (直接経費: 3,900千円、間接経費: 1,170千円)
2006年度: 5,720千円 (直接経費: 4,400千円、間接経費: 1,320千円)
2005年度: 6,110千円 (直接経費: 4,700千円、間接経費: 1,410千円)
|
キーワード | 整数論 / 保型形式 / ゼータ関数 / 跡公式 / 2次形式 / アーベル多様体 / セルバーグ跡公式 / ジーゲル保型形式 / ホロノミー系 / 超特異アーベル多様体 / テータ関数 / ラングランズ予想 / 半整数ウェイト / ヤコービ形式 / L関数 / 次元公式 / 微分作用素 / 特殊関数 / 超特異 / モジュライ / Harder予想 / 志村対応 / Langlands予想 / 球関数 / ベクトル値保型形式 |
研究概要 |
整数論の研究では、素数の性質などを反映する各種のゼータ関数の研究が基本的であり、このゼータ関数を生み出す重要な対象が保型形式である。これは異分野の多くの数学的対象とも関係する。本研究の成果は、保型形式に関わる様々な量(次元公式、多様体の成分数、微分作用素の具体形、ゼータ関数の値など)を具体的に求め、更にこれを用いて一見全く異なる数学的対象の間の新しく精妙な関係を記述したことにある。
|