研究課題/領域番号 |
17340009
|
研究種目 |
基盤研究(B)
|
配分区分 | 補助金 |
応募区分 | 一般 |
研究分野 |
代数学
|
研究機関 | 九州大学 |
研究代表者 |
竹田 雄一郎 九州大学, 大学院・数理学研究院, 准教授 (30264584)
|
研究分担者 |
田口 雄一郎 九州大学, 大学院・数理学研究院, 准教授 (90231399)
佐藤 栄一 九州大学, 大学院・数理学研究院, 教授 (10112278)
稲場 道明 (稲葉 道明) 京都大学, 大学院・理学研究科, 講師 (80359934)
朝倉 政典 九州大学, 大学院・数理学研究院, 助教 (60322286)
中島 徹 日本女子大学, 理学部, 教授 (20244410)
|
連携研究者 |
朝倉 政典 北海道大学, 大学院・理学研究院, 准教授 (60322286)
中島 徹 日本女子大学, 理学部, 教授 (20244410)
|
研究期間 (年度) |
2005 – 2008
|
研究課題ステータス |
完了 (2008年度)
|
配分額 *注記 |
6,090千円 (直接経費: 5,400千円、間接経費: 690千円)
2008年度: 1,430千円 (直接経費: 1,100千円、間接経費: 330千円)
2007年度: 1,560千円 (直接経費: 1,200千円、間接経費: 360千円)
2006年度: 1,600千円 (直接経費: 1,600千円)
2005年度: 1,500千円 (直接経費: 1,500千円)
|
キーワード | 代数的K理論 / レギュレーター写像 / Bott-Chern形式 / 代数サイクル / チャーン類 / ポリログ関数 / ポット・チャーン形式 / レギュレーター / 楕円曲面 / モーデル・ベイユ群 / 数論的多様体 / L関数 / モチーフ |
研究概要 |
本研究の目的は、キューブや代数サイクルといった幾何的な対象を用いて、代数的K理論の元を構成する方法を確立することであった。得られた結果は次のとおりである。(1)楕円曲面上の一次や二次のキューブで、そのBott-Chern形式がKronecker-Eisenstein級数を用いて表されるものを構成した。(2)Goncharovにより定義された代数的サイクル上の積分が、レギュレーター写像に一致することの証明を考案した。(3)Goncharovによる代数的サイクル上の積分をBlochのポリログサイクルに対して計算して、それがポリログ関数を用いて表わされることを示した。
|