研究課題/領域番号 |
19K14605
|
研究種目 |
若手研究
|
配分区分 | 基金 |
審査区分 |
小区分12040:応用数学および統計数学関連
|
研究機関 | 北海道大学 (2021-2023) 国立研究開発法人産業技術総合研究所 (2019-2020) |
研究代表者 |
GAO Yueyuan 北海道大学, 電子科学研究所, 特任助教 (80807793)
|
研究期間 (年度) |
2019-04-01 – 2024-03-31
|
研究課題ステータス |
完了 (2023年度)
|
配分額 *注記 |
1,690千円 (直接経費: 1,300千円、間接経費: 390千円)
2020年度: 650千円 (直接経費: 500千円、間接経費: 150千円)
2019年度: 1,040千円 (直接経費: 800千円、間接経費: 240千円)
|
キーワード | Crack growth phenomenon / Phase-field models / Inhomogeneity / Fracture toughness / Inverse problem / Inverse problem / Phase-field Model / Inverse estimation / Data science / Phase-field model / Numerical analysis / Finite volume method |
研究開始時の研究の概要 |
The research of this project is based on the phase-field model by Takaishi and Kimura which describes the crack growth phenomenon in materials science. The model is a partial differential equations system involving the positive-part function. We study the connection between the structure of the material in deterministic and stochastic cases and the toughness of the material. We perform numerical simulations by finite volume methods and investigate the well-posedness of the system by means of the convergence of the numerical scheme.
|
研究実績の概要 |
We study the crack propagation in an inhomogeneous media in which fracture toughness varies in space. By using the two phase-field models based on two different surface energy functionals, which are so called AT1 and AT2 models, we perform simulations of the crack propagation by finite volume method and show that the J-integral reflects the effective inhomogeneous toughness.
We then formulate inverse problems to estimate space-dependent fracture toughness from the crack path. Our method which is based on data pre-processing and regression, successfully estimates the positions and magnitude of tougher regions for different geometry of inhomogeneity. Based on the results, we discuss the advantages and disadvantages of the AT1 and AT2 models.
|