• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

無限次元解析の諸問題と確率解析の研究

研究課題

研究課題/領域番号 20H01804
研究種目

基盤研究(B)

配分区分補助金
応募区分一般
審査区分 小区分12010:基礎解析学関連
研究機関東京大学

研究代表者

会田 茂樹  東京大学, 大学院数理科学研究科, 教授 (90222455)

研究期間 (年度) 2020-04-01 – 2024-03-31
研究課題ステータス 完了 (2023年度)
配分額 *注記
7,540千円 (直接経費: 5,800千円、間接経費: 1,740千円)
2023年度: 1,820千円 (直接経費: 1,400千円、間接経費: 420千円)
2022年度: 1,950千円 (直接経費: 1,500千円、間接経費: 450千円)
2021年度: 1,950千円 (直接経費: 1,500千円、間接経費: 450千円)
2020年度: 1,820千円 (直接経費: 1,400千円、間接経費: 420千円)
キーワード確率微分方程式 / ラフパス / 無限次元解析 / 対数ソボレフ不等式 / 漸近誤差分布 / 反射壁確率過程 / 確率解析 / 無限次元空間 / 準古典極限 / 解の近似 / 4次モーメント定理 / マリアバン解析 / 近似誤差 / 多次元ヤング積分
研究開始時の研究の概要

本研究では, (1) ループ空間や場の量子論に現れる2階偏微分作用素と関連事項の研究,(2) 確率微分方程式やラフパスで駆動された微分方程式(RDE)の解の研究を行うことを目的としている. (1) に関しては, 大偏差原理, 対数ソボレフ不等式, ラフパス解析による局所解析を組み合わせて解析を行ってきた. これをさらに押し進めるとともに, 特にループ空間の場合に(ループ空間の)リーマン計量を変更した新しいモデルの解析を進めたいと考えている.(2)に関しては, 従来のラフパス理論ではまだカバー出来ていない, 経路依存や反射壁のRDE
の解析や近似誤差分布解析を進めることを考えている.

研究成果の概要

(1) 有界変動な経路依存項を含んだRDE(=ラフパスで駆動される微分方程式)を定式化し、その解の存在、アプリオリ評価、サポート定理を確立し、論文として出版した。
(2)永沼氏と共同で取り組んできたハースト指数H(1/3<H<1/2)の非整数ブラウン運動で駆動されるRDEの近似誤差過程の漸近極限確率過程決定の研究をまとめた。
(3) コンパクトリー群上のpinned path spaceの部分領域のディリクレ境界条件のOrnstein-Uhlenbeck(=OU)作用素を考え、その作用素のスペクトルの準古典極限をpathのエネルギー関数のヘッシアンを用いて決定した。

研究成果の学術的意義や社会的意義

(1) これまでのRDEやその拡張に当たる正則構造理論では取り扱うことができなかった経路依存項を含んだRDEを定式化し、解の存在やアプリオリ評価を示したことにより、
部分的であるが、反射壁SDEや最大・最小過程を含んだよく知られたSDEへのラフパスによる応用が可能になったのは学術的な意義がある。(2) 先行研究では、近似誤差の弱収束のみを論じていたが、本研究では、剰余項のL^pノルムの評価を与えている点で進んだ結果になっている。(3)無限次元では、最小固有値と第2固有値の漸近挙動の研究が主であったが、本研究では、それ以外の固有値の漸近挙動を決定している点が新しい点である。

報告書

(5件)
  • 2023 実績報告書   研究成果報告書 ( PDF )
  • 2022 実績報告書
  • 2021 実績報告書
  • 2020 実績報告書
  • 研究成果

    (8件)

すべて 2024 2023 2022 2020 その他

すべて 雑誌論文 (2件) (うち査読あり 2件、 オープンアクセス 1件) 学会発表 (5件) (うち国際学会 4件、 招待講演 5件) 備考 (1件)

  • [雑誌論文] Rough differential equations containing path-dependent bounded variation terms2024

    • 著者名/発表者名
      Shigeki Aida
    • 雑誌名

      Journal of Theoretical Probability

      巻: - 号: 3 ページ: 2130-2183

    • DOI

      10.1007/s10959-024-01319-3

    • 関連する報告書
      2023 実績報告書
    • 査読あり / オープンアクセス
  • [雑誌論文] Error analysis for approximations to one-dimensional SDEs via the perturbation method2020

    • 著者名/発表者名
      Shigeki Aida and Nobuaki Naganuma
    • 雑誌名

      Osaka Journal of Mathematics

      巻: 57 ページ: 381-424

    • NAID

      120006846164

    • 関連する報告書
      2020 実績報告書
    • 査読あり
  • [学会発表] An approach to asymptotic error distributions of rough differential equations2023

    • 著者名/発表者名
      Shigeki Aida
    • 学会等名
      Stochastic Analysis
    • 関連する報告書
      2023 実績報告書
    • 国際学会 / 招待講演
  • [学会発表] Asymptotics of lowlying Dirichlet eigenvalues of Witten Laplacians on domains in pinned path groups2023

    • 著者名/発表者名
      Shigeki Aida
    • 学会等名
      Stochastic Analysis
    • 関連する報告書
      2023 実績報告書
    • 国際学会 / 招待講演
  • [学会発表] Asymptotics of lowlying Dirichlet eigenvalues of Witten Laplacians on domains in pinned path groups2023

    • 著者名/発表者名
      Shigeki Aida
    • 学会等名
      慶應確率論ワークショップ
    • 関連する報告書
      2023 実績報告書
    • 招待講演
  • [学会発表] An approach to asymptotic error distributions of rough differential equations2022

    • 著者名/発表者名
      Shigeki Aida
    • 学会等名
      Stochastic analysis and applications, Open Japanese-German conference
    • 関連する報告書
      2022 実績報告書
    • 国際学会 / 招待講演
  • [学会発表] An approach to asymptotic error distributions of rough differential equations2022

    • 著者名/発表者名
      Shigeki Aida
    • 学会等名
      Stochastic analysis and related fields
    • 関連する報告書
      2022 実績報告書
    • 国際学会 / 招待講演
  • [備考] 会田茂樹のページ

    • URL

      https://www.ms.u-tokyo.ac.jp/~aida/index-j.html

    • 関連する報告書
      2020 実績報告書

URL: 

公開日: 2020-04-28   更新日: 2025-01-30  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi