• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

離散凸解析による資源配分問題の研究

研究課題

研究課題/領域番号 20K11697
研究種目

基盤研究(C)

配分区分基金
応募区分一般
審査区分 小区分60020:数理情報学関連
研究機関統計数理研究所 (2021-2023)
東京都立大学 (2020)

研究代表者

室田 一雄  統計数理研究所, 大学統計教員育成センター, 特任教授 (50134466)

研究期間 (年度) 2020-04-01 – 2024-03-31
研究課題ステータス 完了 (2023年度)
配分額 *注記
2,990千円 (直接経費: 2,300千円、間接経費: 690千円)
2022年度: 910千円 (直接経費: 700千円、間接経費: 210千円)
2021年度: 910千円 (直接経費: 700千円、間接経費: 210千円)
2020年度: 1,170千円 (直接経費: 900千円、間接経費: 270千円)
キーワード離散凸解析 / 最適化理論 / 数理工学 / 情報基礎 / アルゴリズム / 経済理論 / 情報基盤 / 資源配分問題
研究開始時の研究の概要

「離散凸解析」は,凸関数と離散構造と併せて考察する最適化の理論であり,連続世界の凸解析に匹敵する理論を離散世界に構築することを目標とした提唱された,連続と離散を繋ぐパラダイムである.
本研究では,離散凸解析の双対理論を軸に据えて,離散資源の公平配分問題に関する理論とアルゴリズムを構築する.この問題に対して,コンピュータの負荷分散,グラフ理論における向き付け問題,経済学・ゲーム理論における不可分財の公平配分などの様々な文脈において個別の成果が得られているが,離散凸解析に基づく一般的な枠組を作ることによって,離散凸解析の特徴である「分野の横断性」をより発展させる.

研究成果の概要

「離散凸解析」は,凸関数と離散構造と併せて考察する最適化の理論であり,連続世界の凸解析に匹敵する理論を離散世界に構築することを目標として提唱された,連続と離散を繋ぐパラダイムである.本研究課題では,離散凸解析の双対理論を軸に据えて,M凸集合(整数基多面体の整数点の集合),M2凸集合(2つの整数基多面体の共通部分の整数点の集合),整数ネットワークフロー,整数劣モジュラフローなどの離散構造の上の離散資源の公平配分問題に関する理論とアルゴリズムを構築した.

研究成果の学術的意義や社会的意義

離散凸解析は,最適化において「連続と離散を繋ぐパラダイム」であり,様々な分野で別々に考察されてきた数学的な構造を,分野を越えて理解して,相互に利用するための枠組みである.離散凸解析の理論やアルゴリズムが一般的な形で整理されることによって,コンピュータ科学,オペレーションズ・リサーチ,経済学,ゲーム理論,数学などの様々な分野での共通の言葉やアプローチが生まれ,学問諸分野の交流が可能となる.さらには,その共通の知識に基づいて,様々な応用が繋がり発展していくことが期待される.

報告書

(5件)
  • 2023 実績報告書   研究成果報告書 ( PDF )
  • 2022 実施状況報告書
  • 2021 実施状況報告書
  • 2020 実施状況報告書
  • 研究成果

    (24件)

すべて 2023 2022 2021 2020 その他

すべて 国際共同研究 (1件) 雑誌論文 (13件) (うち国際共著 6件、 査読あり 13件、 オープンアクセス 4件) 学会発表 (8件) (うち国際学会 1件、 招待講演 2件) 備考 (2件)

  • [国際共同研究] Eotvos大学(ハンガリー)

    • 関連する報告書
      2023 実績報告書
  • [雑誌論文] INCLUSION AND INTERSECTION RELATIONS BETWEEN FUNDAMENTAL CLASSES OF DISCRETE CONVEX FUNCTIONS2023

    • 著者名/発表者名
      Moriguchi Satoko、Murota Kazuo
    • 雑誌名

      日本オペレーションズ・リサーチ学会論文誌

      巻: 66 号: 3 ページ: 187-217

    • DOI

      10.15807/jorsj.66.187

    • ISSN
      0453-4514, 2188-8299
    • 年月日
      2023-07-31
    • 関連する報告書
      2023 実績報告書
    • 査読あり / オープンアクセス
  • [雑誌論文] Fair Integral Network Flows2023

    • 著者名/発表者名
      Andras Frank, Kazuo Murota
    • 雑誌名

      Mathematics of Operations Research

      巻: 48 号: 3 ページ: 1393-1422

    • DOI

      10.1287/moor.2022.1303

    • 関連する報告書
      2023 実績報告書
    • 査読あり / 国際共著
  • [雑誌論文] Recent progress on integrally convex functions2023

    • 著者名/発表者名
      Kazuo Murota, Akihisa Tamura
    • 雑誌名

      Japan Journal of Industrial and Applied Mathematics

      巻: 40 号: 3 ページ: 1445-1499

    • DOI

      10.1007/s13160-023-00589-4

    • 関連する報告書
      2023 実績報告書
    • 査読あり / オープンアクセス
  • [雑誌論文] Decreasing minimization on base-polyhedra: Relation between discrete and continuous cases2023

    • 著者名/発表者名
      A. Frank, K. Murota
    • 雑誌名

      Japan Journal of Industrial and Applied Mathematics

      巻: 40 号: 1 ページ: 183-221

    • DOI

      10.1007/s13160-022-00511-4

    • 関連する報告書
      2022 実施状況報告書
    • 査読あり / 国際共著
  • [雑誌論文] Fair integral submodular flows2022

    • 著者名/発表者名
      A. Frank, K. Murota
    • 雑誌名

      Discrete Applied Mathematics

      巻: 320 ページ: 416-434

    • DOI

      10.1016/j.dam.2022.06.015

    • 関連する報告書
      2022 実施状況報告書
    • 査読あり / 国際共著
  • [雑誌論文] Note on the polyhedral description of the Minkowski sum of two L-convex sets2022

    • 著者名/発表者名
      Moriguchi Satoko、Murota Kazuo
    • 雑誌名

      Japan Journal of Industrial and Applied Mathematics

      巻: 40 号: 1 ページ: 223-263

    • DOI

      10.1007/s13160-022-00512-3

    • 関連する報告書
      2022 実施状況報告書
    • 査読あり / オープンアクセス
  • [雑誌論文] Discrete Fenchel duality for a pair of integrally convex and separable convex functions2022

    • 著者名/発表者名
      Murota, K. and Tamura, A.
    • 雑誌名

      Japan Journal of Industrial and Applied Mathematics

      巻: - 号: 2 ページ: 599-630

    • DOI

      10.1007/s13160-022-00499-x

    • NAID

      210000165146

    • 関連する報告書
      2021 実施状況報告書
    • 査読あり / オープンアクセス
  • [雑誌論文] Decreasing minimization on M-convex sets: Background and structures2021

    • 著者名/発表者名
      A. Frank, K. Murota
    • 雑誌名

      Mathematical Programming

      巻: - 号: 1-2 ページ: 977-1025

    • DOI

      10.1007/s10107-021-01722-2

    • 関連する報告書
      2021 実施状況報告書
    • 査読あり / 国際共著
  • [雑誌論文] Decreasing minimization on M-convex sets: Algorithms and applications2021

    • 著者名/発表者名
      A. Frank, K. Murota
    • 雑誌名

      Mathematical Programming

      巻: - 号: 1-2 ページ: 1027-1068

    • DOI

      10.1007/s10107-021-01711-5

    • 関連する報告書
      2021 実施状況報告書
    • 査読あり / 国際共著
  • [雑誌論文] A note on M-convex functions on jump systems2021

    • 著者名/発表者名
      K. Murota
    • 雑誌名

      Discrete Applied Mathematics

      巻: 289 ページ: 492-502

    • DOI

      10.1016/j.dam.2020.09.019

    • 関連する報告書
      2020 実施状況報告書
    • 査読あり
  • [雑誌論文] A discrete convex min-max formula for box-TDI polyhedra2021

    • 著者名/発表者名
      K. Murota, A. Frank
    • 雑誌名

      Mathematics of Operations Research

      巻: -

    • 関連する報告書
      2020 実施状況報告書
    • 査読あり / 国際共著
  • [雑誌論文] On basic operations related to network induction of discrete convex functions2020

    • 著者名/発表者名
      K. Murota
    • 雑誌名

      Optimization Methods and Software

      巻: - 号: 2-3 ページ: 519-559

    • DOI

      10.1080/10556788.2020.1818080

    • 関連する報告書
      2020 実施状況報告書
    • 査読あり
  • [雑誌論文] Relationship of two formulations for shortest bibranchings2020

    • 著者名/発表者名
      K. Murota, K. Takazawa
    • 雑誌名

      Japan Journal of Industrial and Applied Mathematics

      巻: 38 号: 1 ページ: 141-161

    • DOI

      10.1007/s13160-020-00432-0

    • NAID

      210000178025

    • 関連する報告書
      2020 実施状況報告書
    • 査読あり
  • [学会発表] 準M#凸関数の最小化に関する諸性質2023

    • 著者名/発表者名
      塩浦昭義,室田 一雄
    • 学会等名
      京都大学数理解析研究所研究集会「数理最適化: 理論と実践」
    • 関連する報告書
      2023 実績報告書
  • [学会発表] 準M#凸関数の最小化について2023

    • 著者名/発表者名
      塩浦昭義,室田 一雄
    • 学会等名
      電子情報通信学会コンピュテーション研究会
    • 関連する報告書
      2023 実績報告書
  • [学会発表] L2凸集合の多面体表現2022

    • 著者名/発表者名
      森口聡子,室田一雄
    • 学会等名
      日本オペレーションズ・リサーチ学会2022年秋季研究発表会
    • 関連する報告書
      2022 実施状況報告書
  • [学会発表] 離散凸解析の偶然と必然2021

    • 著者名/発表者名
      室田一雄
    • 学会等名
      日本オペレーションズ・リサーチ学会2021年秋季研究発表会
    • 関連する報告書
      2021 実施状況報告書
    • 招待講演
  • [学会発表] 整凸関数と分離凸関数に対するFenchel双対性2021

    • 著者名/発表者名
      室田一雄,田村明久
    • 学会等名
      日本オペレーションズ・リサーチ学会2021年秋季研究発表会
    • 関連する報告書
      2021 実施状況報告書
  • [学会発表] 離散凸関数の族に関する包含・交わり関係2021

    • 著者名/発表者名
      森口聡子,室田一雄
    • 学会等名
      日本オペレーションズ・リサーチ学会2021年秋季研究発表会
    • 関連する報告書
      2021 実施状況報告書
  • [学会発表] Introduction to discrete convex functions2021

    • 著者名/発表者名
      K. Murota
    • 学会等名
      The 69-th Yunchou Qianli Forum lecture at Operations Research Society of China
    • 関連する報告書
      2021 実施状況報告書
    • 国際学会 / 招待講演
  • [学会発表] Min-max formulas for separable discrete convex minimization on box-TDI polyhedra2021

    • 著者名/発表者名
      K. Murota, A. Frank
    • 学会等名
      日本オペレーションズ・リサーチ学会2021年春季研究発表会, 2-B-7
    • 関連する報告書
      2020 実施状況報告書
  • [備考] DCP (Discrete Convex Paradigm)

    • URL

      http://ist.ksc.kwansei.ac.jp/~tutimura/DCP/

    • 関連する報告書
      2022 実施状況報告書
  • [備考] DCP (Discrete Convex Paradigm)

    • URL

      http://cs.kwansei.ac.jp/~tutimura/DCP/

    • 関連する報告書
      2020 実施状況報告書

URL: 

公開日: 2020-04-28   更新日: 2025-01-30  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi