研究課題/領域番号 |
21540004
|
研究種目 |
基盤研究(C)
|
配分区分 | 補助金 |
応募区分 | 一般 |
研究分野 |
代数学
|
研究機関 | 室蘭工業大学 |
研究代表者 |
桂田 英典 室蘭工業大学, 大学院・工学研究科, 教授 (80133792)
|
研究期間 (年度) |
2009 – 2011
|
研究課題ステータス |
完了 (2011年度)
|
配分額 *注記 |
4,550千円 (直接経費: 3,500千円、間接経費: 1,050千円)
2011年度: 1,300千円 (直接経費: 1,000千円、間接経費: 300千円)
2010年度: 1,300千円 (直接経費: 1,000千円、間接経費: 300千円)
2009年度: 1,950千円 (直接経費: 1,500千円、間接経費: 450千円)
|
キーワード | 数論 / 合同 / Triple L関数 / Ikeda-Miyawaki lift / Poincare級数 / twisted Kocher-Maass級数 / Rankin-Selberg級数 / 1次従属性 / スタンダードL関数 / Ikeda lift / 保型形式の合同 / Kim-Shahidi lift / エルミートモジュラー形式 / Rankin-Selberg zeta関数 / Ikeda予想 / スタンダードゼータ関数 / Harder予想 / Bloch-Kato予想 |
研究概要 |
1変数尖点形式のHermite modular形式へのIkeda lift(HermitianIkeda lift)の周期に関する池田保氏(京大)の予想を完全に解決した.Symmetric fourth L関数のcritical valueの代数性を証明した.また,Kim-Shahidi liftのスタンダードL関数の特殊値を厳密に計算した.これにより,D. Zagier氏が予想したRamanujan delta関数のSymmetric fourth L関数の値と一定の比を除いて一致することを確認した(伊吹山知義氏(阪大)との共同研究).
|