研究課題/領域番号 |
21K10359
|
研究種目 |
基盤研究(C)
|
配分区分 | 基金 |
応募区分 | 一般 |
審査区分 |
小区分58010:医療管理学および医療系社会学関連
|
研究機関 | 帝京大学 |
研究代表者 |
藤代 尚文 帝京大学, 公私立大学の部局等, 講師 (60601789)
|
研究分担者 |
河内 正治 帝京大学, 公私立大学の部局等, 教授 (60152972)
大滝 恭弘 帝京大学, 公私立大学の部局等, 教授 (60464004)
|
研究期間 (年度) |
2021-04-01 – 2024-03-31
|
研究課題ステータス |
交付 (2022年度)
|
配分額 *注記 |
4,030千円 (直接経費: 3,100千円、間接経費: 930千円)
2023年度: 390千円 (直接経費: 300千円、間接経費: 90千円)
2022年度: 390千円 (直接経費: 300千円、間接経費: 90千円)
2021年度: 3,250千円 (直接経費: 2,500千円、間接経費: 750千円)
|
キーワード | 医療安全 / クローズドクレーム / データベース / ディープラーニング / 医療事故 / 患者安全 / 再発防止策 / 深層学習 / 人工知能 |
研究開始時の研究の概要 |
保険会社の保有する医療事故に関するクローズドクレーム(法的に決着のついた賠償請求)を収集・分類・整理することにより構築中のクローズドクレームデータベースを利用して、医療事故が及ぼす法的・経済的影響を予測するディープラーニングモデルを作成する。具体的には、本ディープラーニングモデルは、医療事故に係る診療科・疾患名・診療過程等の予め特定された情報を入力すると、類似の医療事故を出力し、また、予想される法的な責任の種類と金銭的損害を出力するものである。本ディープラーニングモデルを医療現場におけるリスクマネジメントに応用し、本邦の医療安全の向上を促進することを目指す。
|
研究実績の概要 |
本研究の目的は、損保ジャパン株式会社(SJ 社)の保有する医療事故に関するクローズドクレーム(法的に決着のついた賠償請求)を収集・分類・整理することにより構築中のクローズドクレームデータベースを利用して、類似の医療事故を導出し、また、医療事故が及ぼす法的・経済的影響を予測するディープラーニングモデルを作ることである。さらに、我々が所属する帝京大学の医療現場に本ディープラーニングモデルの試用を依頼し、現場の医療従事者からその使い勝手、および予測精度についてフィードバックを受けることにより、実際の医療現場で利用しやすいユーザインタフェースを明らかにして、実用化に向けて一定の 目途を得ることである。
2022年度は、クローズドクレームデータベースに登録した医療事故情報を有効活用するために、類似の医療事故を導き出すディープラーニングモデルの構築を進めた。自然言語処理ディープラーニングモデルとしてSentence-BERT、本モデルに与えるデータとしては各医療事故に付与している要約文を選定した。さらに、繰り返し最適化手法による本モデルの学習アルゴリズムを独自に考案した。その結果、従来から広く使用されている類似文書検索システムOkapi BM25と比較すると、学習済みSentence-BERTモデルでは高い類似文抽出精度が得られることを示すことができた。以上の成果を、査読付き英文国際学術誌にまとめて出版した。また、この類似事故抽出用ディープラーニングモデルを使用するためのWEBインターフェースも開発済みである。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
本研究開始前からプロトタイプ版のクローズドクレームデータベースで試行錯誤を済ませており、そこから十分な知見が得られていたことから、スムーズに本研究を進めることができた。
|
今後の研究の推進方策 |
当初の予定通り、クローズドクレームデータベースに登録された医療事故情報を詳細に分析し、医療事故が及ぼす法的・経済的影響を予測するディープラーニングモデルの構築を進める。また、ディープラーニングモデルを活用するためのユーザインタフェースの開発も引き続き進め、医療従事者に試用してもらう予定である。
|