研究課題/領域番号 |
23540189
|
研究種目 |
基盤研究(C)
|
配分区分 | 基金 |
応募区分 | 一般 |
研究分野 |
基礎解析学
|
研究機関 | 新潟大学 |
研究代表者 |
斎藤 吉助 新潟大学, 自然科学系, 教授 (30018949)
|
研究分担者 |
加藤 幹雄 信州大学, 工学部, 教授 (50090551)
羽鳥 理 新潟大学, 自然科学系, 教授 (70156363)
三谷 健一 岡山県立大学, 情報工学部, 准教授 (00468969)
渡邉 恵一 新潟大学, 自然科学系, 准教授 (50210894)
|
研究期間 (年度) |
2011 – 2013
|
研究課題ステータス |
完了 (2013年度)
|
配分額 *注記 |
4,940千円 (直接経費: 3,800千円、間接経費: 1,140千円)
2013年度: 1,560千円 (直接経費: 1,200千円、間接経費: 360千円)
2012年度: 1,560千円 (直接経費: 1,200千円、間接経費: 360千円)
2011年度: 1,820千円 (直接経費: 1,400千円、間接経費: 420千円)
|
キーワード | バナッハ空間 / ノルム不等式 / James 定数 / von Neumann-Jordan 定数 / von Neumann-Jordan定数 / James定数 / Dunkl-Williams不等式 / 三角不等式 / ノルム空間 / Dunkl-Williams定数 / skew定数 |
研究概要 |
この研究課題での主な成果は、次のようなものである。 (1)バナッハ空間の幾何学的な構造を示す定数が多くあるが、その中で、von Neumann-Jordan定数やJames定数等のの計算方法を提示し、2次元空間であるが、多くのバナッハ空間について正確な計算を行い、その定数の性質や特徴を示した。(2)バナッハ空間における直交性の概念を調べることにより、有限次元空間の構造を調べた。(3)三角不等式の精密化や一般化を行い、バナッハ空間の幾何学的概念の特徴付けに応用を試みた。
|