研究課題/領域番号 |
24540072
|
研究種目 |
基盤研究(C)
|
配分区分 | 基金 |
応募区分 | 一般 |
研究分野 |
幾何学
|
研究機関 | 金沢大学 |
研究代表者 |
加須栄 篤 金沢大学, 数物科学系, 教授 (40152657)
|
研究分担者 |
服部 多恵 石川工業高等専門学校, 一般教育, 講師 (40569365)
|
研究期間 (年度) |
2012-04-01 – 2016-03-31
|
研究課題ステータス |
完了 (2015年度)
|
配分額 *注記 |
4,940千円 (直接経費: 3,800千円、間接経費: 1,140千円)
2015年度: 1,170千円 (直接経費: 900千円、間接経費: 270千円)
2014年度: 1,170千円 (直接経費: 900千円、間接経費: 270千円)
2013年度: 1,300千円 (直接経費: 1,000千円、間接経費: 300千円)
2012年度: 1,300千円 (直接経費: 1,000千円、間接経費: 300千円)
|
キーワード | リーマン多様体 / ネットワーク / 理想境界 / ディリクレ形式 / ディリクレエネルギー有限写像 / ランダムウォーク / スペクトルギャップ / 双曲埋め込み / ディクレエネルギー有限写像 / 無限ネットワーク / 有効抵抗 / 容量 / 倉持コンパクト化 / p-調和関数 / p-ディリクレ和有限関数 / 測地的コンパクト化 |
研究成果の概要 |
非放物的ネットワークの倉持境界に関する研究である。まず、ネットワークのランダムウォークはほとんど確かに倉持境界に値を持つ確率変数に収束し、その像測度が調和測度を与える。これを通して調和関数のディリクレ問題およびノイマン問題の核関数表現が可能となる。また、双曲空間に埋め込まれた有限グラフを考察し、双曲空間の幾何学的コンパクト化をもとに、埋め込まれたグラフのチーガー定数、スペクトルギャップなどをグラフの大きさによる評価を与える。さらに、p-ネットワークを含むより一般的な抵抗関数を備えたネットワーク、モジュラー列空間を枠組みとするネットワークのポテンシャル論の体系的な基礎研究を行う。
|