研究課題/領域番号 |
25400087
|
研究種目 |
基盤研究(C)
|
配分区分 | 基金 |
応募区分 | 一般 |
研究分野 |
幾何学
|
研究機関 | 京都大学 |
研究代表者 |
岸本 大祐 京都大学, 理学(系)研究科(研究院), 准教授 (60402765)
|
連携研究者 |
河野 明 同志社大学, 理工学部, 教授 (00093237)
入江 幸右衛門 大阪府立大学, 大学院理学研究科, 教授 (40151691)
岩瀬 則夫 九州大学, 大学院数理学研究院, 教授 (60213287)
栗林 勝彦 信州大学, 理学部, 教授 (40249751)
玉木 大 信州大学, 理学部, 教授 (10252058)
佃 修一 琉球大学, 理学部, 准教授 (50305182)
|
研究期間 (年度) |
2013-04-01 – 2016-03-31
|
研究課題ステータス |
完了 (2015年度)
|
配分額 *注記 |
3,380千円 (直接経費: 2,600千円、間接経費: 780千円)
2015年度: 1,040千円 (直接経費: 800千円、間接経費: 240千円)
2014年度: 1,170千円 (直接経費: 900千円、間接経費: 270千円)
2013年度: 1,170千円 (直接経費: 900千円、間接経費: 270千円)
|
キーワード | 代数トポロジー / ホモトピー論 / ゲージ群 / ポリヘドラルプロダクト / polyhedral product / Samelson積 / Stanley-Reisner環 / 組み合わせ論 |
研究成果の概要 |
ループ空間のループ積のホモトピー的非可換性を、ゲージ群とポリヘドラルプロダクトの二つの対象を通して研究した。ゲージ群に関しては、mod p 分解、非単連結な構造群をもつ主束のゲージ群のホモトピー型の分類、A∞型の分類を行った。特に、A∞型の分類において、LanneのT関手を用いた高次Whitehead積の解析という新しい手法を開発した。ポリヘドラルプロダクトに関しては、ファットウェッジフィルトレーションを導入し、その構造解析を通して、ポリヘドラルプロダクトのホモトピー型の記述を行った。その応用として、単体複体が組み合わせ代数におけるGolod性をもつ条件をトポロジー的に証明した。
|