研究課題
若手研究(B)
(1)三角圏上の双余ねじれ対はt-構造・クラスター傾部分圏・functorially finite rigid部分圏を包括する概念である。双余ねじれ対のハートが同値になるための条件を、付随する関手を用いて与えた。(2)群が特殊な場合にBurnside丹原関手の素スペクトラムの計算を行った。また、biset変形を丹原関手に対して与えた。Biset関手をある種の2-圏上の特別なMackey関手として実現した。Burnside環のなすbiset関手のもつ乗法的構造射の性質を記述し、「部分的丹原性」を明らかにした。さらに、有限圏のなす2-圏上のderivatorからbiset関手を得る方法を与えた。
すべて 2017 2016 2015 2014 その他
すべて 国際共同研究 (1件) 雑誌論文 (6件) (うち査読あり 6件、 謝辞記載あり 4件) 学会発表 (28件) (うち国際学会 4件、 招待講演 10件) 備考 (4件)
Communications in Algebra
巻: 44 号: 12 ページ: 5105-5148
10.1080/00927872.2016.1147572
巻: 44 号: 10 ページ: 4302-4326
10.1080/00927872.2015.1087545
Journal of Algebra
巻: 451 ページ: 166-207
10.1016/j.jalgebra.2015.12.004
Advances in Mathematics
巻: 289 ページ: 603-684
10.1016/j.aim.2015.11.024
巻: 398 ページ: 21-54
10.1016/j.jalgebra.2013.09.010
巻: 399 ページ: 904-926
10.1016/j.jalgebra.2013.10.016
http://www.sci.kagoshima-u.ac.jp/~nakaoka/
http://ris.kuas.kagoshima-u.ac.jp/html/100005453_ja.html
http://kuris.cc.kagoshima-u.ac.jp/713016.html