昨年度より代数的サイクルと混合モチーフについて研究している。混合モチーフは数論的代数幾何学における壮大な構想であり、理論として確立されたあかつきには、代数幾何学のみならず整数論へも数多くの深い応用をもつことが期待されている重要な分野である。しかし多くの優れた研究者の努力にも関わらず、混合モチーフはいまだ定義すらない極めて研究の困難な分野でもある。私は特に複素数体上の混合モチーフの理論を確立することを目的として研究してきた。これまでに、数論的ホッジ構造という概念を導入し、代数曲面上の0-サイクルや、代数曲線のK群についてのブロック予想について研究してきた。 本年度の研究では、代数曲線のK群に関して更なる研究結果を得ることに成功した。より詳しく説明すると、これまでK群の元を扱うときにその元のサポートに条件がついていたのであるが、その条件を弱めることができた。鍵となるのはベイリンソン予想であるが、これについてネーター・レフシェッツ型の定理を、斎藤秀司氏と共同で証明することができた。これらの研究結果は、論文として執筆中である。また多くの研究集会、セミナー等においても講演した。特に本年度は、フランスのフーリエ研究所における研究集会において講演する機会を得た。
|