研究成果の概要 |
LiNGAMモデルは連続変数のみを扱う。異質性を表現するために, LiNGAMモデルが離散変数を扱えるように拡張することを試みた。まずは, 離散変数と連続変数の関係が非巡回有向グラフであると仮定したモデルを開発した。また、離散変数を扱うことのできる機械学習モデルと因果モデルを組み合わせることを考えた。未観測共通原因への対応としては, 非ガウス性と独立性を利用することで操作変数法の拡張を行なった。さらに, 未観測共通原因がどこにありそうかを推測する方法をLiNGAMモデルの枠組みで提案した。
|
研究成果の学術的意義や社会的意義 |
LiNGAMモデルは因果探索の標準的な方法の一つとして注目を集めているが, 離散変数が混在する状況を扱えるようにすることでさらに応用範囲を広げることができた。また機械学習モデルと因果モデルを組み合わせたモデルについては,制御への応用が期待される。操作変数は広く用いられているが,非ガウス性と独立性を利用した操作変数法については,従来よりも多くの情報を抽出することができることがわかった。未観測共通原因がどこにありそうかを推測する方法については, 条件付き独立性を用いる因果関係推測法の枠組みでは, そのような方法が提案されているが, LiNGAMモデルの枠組みでは対応する方法がなかった。
|