素数定理のひとつの類似であり整数論や微分幾何学などで重要な研究対象である「素測地線定理」は、現在まで階数1の場合しか主に研究されてこなかった。今回、一つの目標であった「階数2の群に対するコンパクトでない場合の高階数のカルタン部分群に対応する素測地線定理」を初めて証明出来た意義は大きいと言える。 また、特別な場合であるが、階数2の群に対する非コンパクトな場合のラプラシアンのスペクトルや固有空間の次元の評価に必要なセルバーグ型ゼータ関数の導関数の非零領域についての評価が得られたので、他の階数2の場合への拡張が期待できると言える。
|