本研究では主にボレル確率測度を持つ完備可分距離空間である測度距離空間の幾何学に関する成果が得られた。特に、測度距離空間の同型類全体の集合において M. Gromov (1999) が導入したボックス距離とリプシッツ順序に関して、証明の概略のみが与えられていた、任意のプレコンパクト集合が有界であること、つまりそのプレコンパクト集合に属す全ての測度距離空間を支配する1つの測度距離空間が存在することの証明を与え、論文として出版した。その他にも、測度距離空間の幾何学の研究おいて有用となる幾つかの命題を証明した。
|