• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 研究成果報告書

D加群を用いた超平面配置とSolomon-寺尾複体の革新的研究

研究課題

  • PDF
研究課題/領域番号 18KK0389
研究種目

国際共同研究加速基金(国際共同研究強化(A))

配分区分基金
研究分野 代数学
研究機関立教大学 (2023)
九州大学 (2018-2022)

研究代表者

阿部 拓郎  立教大学, 理学部, 教授 (50435971)

研究期間 (年度) 2019 – 2023
キーワード超平面配置 / 対数的ベクトル場 / 自由配置 / Solomon-寺尾理論 / Liouville複体 / 完全交差性 / Cohen-Macaulay性 / Ziegler予想
研究成果の概要

本研究計画では、超平面配置の研究において近年注目を集めているSolomon-寺尾多項式を中心とする理論にD加群特にLiouville複体の観点を取り入れることで、Solomon-寺尾二変数多項式の理解をD加群的視点から行った。まずLiouville代数のCohen-Macaulay性が自由性と同値なこと、及びLiouville複体の一変数へのある特殊化がSolomon-寺尾複体と一致することが分かった。これによりLiouville複体がSolomon-寺尾理論の二変数版である可能性が高まり、議論の枠組みが大きく広がった。更にZiegler予想を示すなど、対数的加群周りで大きな進展を得た。

自由記述の分野

超平面配置、代数学

研究成果の学術的意義や社会的意義

本研究では、直線の有限集合の一般化である超平面配置の代数を幾何・表現論の視点から解析・一般化することを目指した。まずSolomon-寺尾理論について説明する。超平面配置の代数は超平面に接するベクトル場、流れのようなものの集合である対数的ベクトル場の研究である。この対数的ベクトル場と組み合わせ論及び幾何と繋ぐものがSolomon-寺尾理論であった。これは代数的な定義を持っているが、これに対して近年Walther氏により導入されたD加群的視点を持つLiouville複体理論を融合することで、Solomon-寺尾理論に新たな視点を導入することが、本研究では達成された。

URL: 

公開日: 2025-01-30  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi