• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2007 年度 実績報告書

解が初期値にリプシッツ連続的に依存する微分方程式系に対する適切性理論の構築

研究課題

研究課題/領域番号 19540177
研究機関静岡大学

研究代表者

田中 直樹  静岡大学, 理学部, 教授 (00207119)

研究分担者 久村 裕憲  静岡大学, 理学部, 准教授 (30283336)
田村 英男  岡山大学, 大学院・自然科学研究科, 教授 (30022734)
浅倉 史興  大阪電気通信大学, 工学部, 教授 (20140238)
松本 敏隆  広島大学, 大学院・理学研究科, 助教 (20229561)
キーワードsemigroup of Lipshitz oprators / semilinear equation / Carrier equation / acoustic boundary condition / qusilinear equation / metric-like functional
研究概要

Kirchhoff方程式を代表とする準線形双曲型方程式に対する混合問題の時間大域的適切性の問題は,多くの場合,方程式のもつ特性を生かしながら,個別的に研究されている。これらの個別的な考察から系統的な性質を見い出し,統一的な適切性理論を展開できないかという問題は興味深い。これらの問題を,リプシッツ作用素半群の考察を通して,解明していくことが本研究の目的である。準線形双曲型方程式の混合問題に対する研究手法として,加藤教授により考案された理論がある。これは,時間局所的な古典解を求めるための強力な理論として位置づけられている。本研究は,この理論を,非線形な消散項を伴う準線形双曲型方程式に対する混合問題の時間大域的適切性にも適用できるように拡張するという意味も持つ。
2つの解の差を測るものとして,ノルムが用いられることが多く,その方法に対応する理論が単調作用素の理論である。加藤理論を含むような一般化として,リプシッツ作用素半群の理論建設が強く望まれており,無限小生成作用素が連続な場合の理論は完成している。本研究では,局所リプシッツ作用素半群の無限小生成作用素が必ずしも連続とは限らない場合を考察した。まず,解の初期値に関する連続的依存性を保障する条件として,距離に似た,非負なリプシッツ連続汎関数により表現される新たな消散条件を提案した。この消散条件のもと,局所リプシッツ作用素半群が非線形発展方程式の軟解を与えるための必要十分条件を与えることに成功し,得られた理論をCarrier equationの混合問題へ応用した。

  • 研究成果

    (2件)

すべて 2008 2007

すべて 雑誌論文 (1件) (うち査読あり 1件) 学会発表 (1件)

  • [雑誌論文] An application of semigroups of locally Lipschitz operators to Carrier equations with acoustic boundary conditions2008

    • 著者名/発表者名
      Kobayashi, Yoshikazu
    • 雑誌名

      J.Math.Anal.Appl. 338

      ページ: 852-872

    • 査読あり
  • [学会発表] 解が初期値にリプシッツ連続的に依存する微分方程式系に関する適切性定理2007

    • 著者名/発表者名
      田中, 直樹
    • 学会等名
      実函数論・函数解析学合同シンポジウム
    • 発表場所
      九州大学
    • 年月日
      20070800

URL: 

公開日: 2010-02-04   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi