本研究では,胃X線画像を対象とした機械学習に基づくデータクレンジング技術の構築を目的とする.医用画像解析分野において,大規模なデータに基づく教師有り学習は有効性が認識されつつある.一方で,現在提案されている多くの手法は,モデルの構築および評価にとどまっており,データセットの構築に係る労力については考慮されていない.機械学習による診断支援技術を実社会応用するためには,データへのラベリングコストを含めたトータルパフォーマンスを考慮する必要がある.そこで本研究では,機械学習の社会実装へ向け必要となるデータセット構築の部分に注目し,効率的にデータクレンジングを実現可能とする技術を構築する.
|