本研究は、PET/CTなど「機能画像と形態画像の組」に対する汎用的な病変検出モデルの開発を目的としている。通常、病変検出モデルの開発には、病変を有する症例に対し、病変の部位などをマークした「教師データ」が必要で、作成には多大な労力を要する。また、教師データとして与えられていない種類の病変は検出できない。一方、提案手法は正常な医用画像のみから学習を行うことができ、病変に関する教師データを必要としない。これによりモデルの開発が容易となり、さらに正常画像と異なる任意の所見を異常として拾い上げることができる。PET/MRIなど他の検査への適用も容易である。
|