• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実施状況報告書

GCD和関数を含む数論的関数の総和について

研究課題

研究課題/領域番号 21K03205
研究機関山口大学

研究代表者

木内 功  山口大学, 大学院創成科学研究科, 教授 (30271076)

研究期間 (年度) 2021-04-01 – 2025-03-31
キーワードgcd / 数論的関数 / リーマンゼータ関数
研究実績の概要

GCD和関数(最大公約数を変数とする2変数関数の和関数をいう)を含む総和公式について、初等整数論の立場から考察する方法と解析的理論の立場から考察する方法がある。本研究ではこれらを融合することで、様々な数論的関数の性質を解明することにある。しかしながら、今年度の研究実績は、解析的な方法を利用して得られた結果となった。以下詳細に述べる。1.Anderson-Apostol和はRamanujan和の一般化であり、様々な分野で用いられている。 本研究では、squarefull numbersを用いた2変数の2重和としてAnderson-Apostol和を定義して、2重和の部分和公式を解析学の方法とRiemannゼータ関数の解析的性質を利用して求めたものであり、昨年度の研究結果の一部改良を与えている。2.昨年度の求めたsquarefull numbersに関する方法をcube-full numbersに適用したものであるが、まったく同様にはできず、解析的方法を駆使しながら求めた。3.mn<xを満たすZm*Znの部分群の個数に関する和公式は, Sui-Liuによって最近、考察されている。ここでは、重み関数として対数関数を利用した和公式を求めた。このことで、彼らの結果の予想の確からしさを示した。さらに、Riemannゼータ関数の零点との密接な関係を示すまでには到達していないが、来年度を見据えて具体的に表記することを目指す.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

研究集会等に積極的に参加し、討論することで十分な知識と好奇心、発想が沸いている。また、出先にある豊富な情報(図書、資料等)を十分に活用することで研究に役に立っている。

今後の研究の推進方策

今年度の研究実績でも述べたように、初等的な方法と解析的な方法を融合した結果に今のところ結びついていないが、しかし、Riemann 予想と零点の1位を仮定すれば、融合的な結果を得ている(投稿中)。これまでの研究方法を大幅に見直して、新たな方法の開拓に努める。

次年度使用額が生じた理由

予定していた研究集会の開催が中止になり、研究費を使用することができなかった。また、学内業務が忙しいため、予算の使用ができなかった。それに伴い、研究発表を積極的に行い共同研究者との打ち合わせを密にする。

  • 研究成果

    (2件)

すべて 2023

すべて 雑誌論文 (2件) (うち査読あり 2件)

  • [雑誌論文] On a sum involving squarefull numbers, II2023

    • 著者名/発表者名
      Kiuchi Isao
    • 雑誌名

      Moscow Journal of Combinatorics and Number Theory

      巻: 12 ページ: 241~246

    • DOI

      10.2140/moscow.2023.12.241

    • 査読あり
  • [雑誌論文] On sums of gcd-sum functions2023

    • 著者名/発表者名
      Inoue Shota、Kiuchi Isao
    • 雑誌名

      International Journal of Number Theory

      巻: 19 ページ: 593~619

    • DOI

      10.1142/S179304212350029X

    • 査読あり

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi