• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2022 年度 実施状況報告書

災害救助シミュレーションによる動的確率的環境下での多目的分散制約最適化問題の研究

研究課題

研究課題/領域番号 21K12039
研究機関愛知大学

研究代表者

岩田 員典  愛知大学, 経営学部, 教授 (80367606)

研究分担者 伊藤 暢浩  愛知工業大学, 情報科学部, 教授 (40314075)
内種 岳詞  愛知工業大学, 情報科学部, 准教授 (70710143)
研究期間 (年度) 2021-04-01 – 2025-03-31
キーワード災害救助シミュレーション / 分散制約最適化問題 / RoboCupRescue Simulation / マルチエージェントシステム
研究実績の概要

分散制約最適化問題を RoboCupRescue Simulation に適用する際に問題となる通信回数の制限を緩和するライブラリの更新を行った。また、そのライブラリのログデータをより詳細に取得できるようにもしている。
分散制約最適化問題の適用においては Layerd DCOP を対象とした。ただし、Layerd DCOP そのままでは RoboCupResuce においては「市民を掘り起こす」→「掘り起こされた市民を搬送する」といった順序関係や、市民が死亡するまでに救助を完了しなければならないという時間的な制約をうまく表現できないという問題があった。
そこで、順序制約と時間制約を考慮した L-DCOP エージェントを提案した。このアルゴリズムでは順序制約を階層として表現し、階層ごとにタスク割り当てをすることで優先順位や時間的な制約を解決することを目指している。
この提案アルゴリズムを実装し、問題なく動作することが確認できた。しかし、時間制約を設けたことで、移動に費やす時間が長い環境においてはタスク完了率が低いという新たな問題が明らかになった。その原因はエージェントが移動にかかると見積もる時間と実際にかかる時間の差にあると考えられた。そのため、移動時間の推定を改良を目差した。この改良によりタスク完了率は69%から75%へと6ポイント上昇した。ただし、移動時間の見積は環境(地図とその災害状況)に影響を受けるため、過去に研究した地図の分析手法などと併せて更に改良をしていく予定である。

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

アルゴリズム提案、問題点の洗い出し、改良など大旨順調に進んでいる。
ただし、RoboCup の世界大会にはオンラインでしか参加できなかったため、これらの成果や改善点について他の研究者との議論があまり進められなかった。

今後の研究の推進方策

L-DCOP が有効なことは判明しているが、移動時間の見積が正しくないと時間制約をうまく活用することが出来ない。そこで、過去に行った災害状況と環境と地図の分析に関する研究成果などを基に、移動時間の見積をより正しく行えることを目差す。
また、RoboCupRescue Simulation では新たに Python でのエージェント開発環境も提供されることになった。Python は機械学習のライブラリなどが豊富なため、DCOP を適用するためのライブラリを開発するとともに、機械学習によるタスク割り当て問題の改良についても模索していく。

次年度使用額が生じた理由

国外へ学会出張に行くことができず出張費の使用がなかったため、次年度使用額が生じた。

  • 研究成果

    (4件)

すべて 2022 その他

すべて 学会発表 (3件) (うち国際学会 1件) 備考 (1件)

  • [学会発表] Implementation of Pseudo-Communication Module for DCOP Algorithms on RRS and Improvement of Binary Max-Sum2022

    • 著者名/発表者名
      Hiroya Suzuki, Yuki Okado, Toshinari Sakai, Yuki Miyamoto, Taishun Kusaka, Takeshi Uchitane, Kazunori Iwata, Nobuhiro Ito
    • 学会等名
      Joint 12th International Conference on Soft Computing and Intelligent Systems and 23rd International Symposium on Advanced Intelligent Systems
    • 国際学会
  • [学会発表] RRS における L-DCOP エージェントの移動時間推定に関する検討2022

    • 著者名/発表者名
      前田 綾也, 上原 温揮, 松永 一希, 藤澤 丈, 鈴木 宏哉, 安藤 圭祐, 内種 岳詞, 岩田 員典, 伊藤 暢浩
    • 学会等名
      人工知能学会「社会における AI」研究会 第45回研究会
  • [学会発表] 情報アーキテクチャに基づく RRSViewer の UX 改善2022

    • 著者名/発表者名
      川上 洵恩, 長谷川 滉, 安藤 圭祐, 内種 岳詞, 岩田 員典, 伊藤 暢浩
    • 学会等名
      人工知能学会「社会における AI」研究会 第45回研究会
  • [備考] 愛知大学研究者情報データベース

    • URL

      http://edu.aichi-u.ac.jp/tsearch/AUT_detail.aspx?pid=11338

URL: 

公開日: 2023-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi