研究課題/領域番号 |
21K18086
|
研究機関 | 順天堂大学 |
研究代表者 |
鍵山 暢之 順天堂大学, 医学部, 准教授 (20722010)
|
研究期間 (年度) |
2021-04-01 – 2024-03-31
|
キーワード | 心臓超音波検査 / 人工知能 |
研究実績の概要 |
本研究は左室収縮能が軽度低下もしくは保たれた高齢入院心不全患者におけるトランスサイレチン型心アミロイドーシスの有病率と臨床的意義を検討する前向き多施設研究(UNVEIL-ATTR研究: https://jrct.niph.go.jp/latest-detail/jRCT1031210714)のデータベースを用いて、ストレイン解析を行い、その結果を用いてradiomics特徴量を抽出し、そこからmachine learning modelを作成するという流れで計画されている。初年度に当たる2021年度は、まず研究に必要な機材の購入、データ集め、研究計画の倫理委員会用書類作成、周辺知識の確認、打ち合わせなどを行った。機材に関して、科研費を用いてストレイン自動解析用のソフトウェアを購入し、心エコー画像解析のためのプラットフォームを整えた。また日本循環器学会などの関連学会に参加して、radiomics技術、人工知能を用いた画像処理、心エコー図検査の最新の知見を得て、より効果的な研究計画を考慮した。その中で心エコー図を用いて作成した心不全の予後予測リスクスコアを検証することを前実験として行い、良好な結果を得たために論文を一報作成した。同論文は現在査読国際学術誌に投稿中である。データ集めに関して、こちらは元となるUNVEIL-ATTR研究が新型コロナウイルス感染症の流行や、研究計画の変更などがあったために研究開始が遅れており、そのため本研究で使用するデータの蓄積も遅れている。研究自体は2022年度初頭から開始され、2023年3月現在で50例強の症例が集まっている。今年は症例数が増加する見込みであり、症例が集まり次第、実際のデータ解析を開始する。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
4: 遅れている
理由
前述のように、本研究はUNVEIL-ATTR研究で蓄積されたデータを使用するが、UNVEIL-ATTR研究が新型コロナウイルス感染症の流行や、研究計画の変更などがあったために研究開始が遅れており、そのため本研究で使用するデータの蓄積も遅れている。ただし、研究自体は2022年度初頭から開始されており、データは少しずつ集まっている。一方で、現在50例強とまだ症例数が多くないため、場合によっては他のデータベースからのデータ抽出も考え、計画変更を視野に、データ蓄積を進めている状態である。
|
今後の研究の推進方策 |
来年度はデータ(心エコー図画像)の蓄積と並行して画像の解析を行う。上述のように、場合によっては他のデータベースからの抽出で加えることのできる他のデータソースを模索中であり、解析によりデータが作成されたら、それを元に機械学習モデルを作成する。
|
次年度使用額が生じた理由 |
別記のように、新型コロナウイルス感染症の影響もあり、症例登録が遅々としており、研究が全体として遅延している。来年度以降、別のデータベースの使用も視野に入れて、研究を加速し、予定通りの学会発表や機械学習モデル作成のための費用を使用する予定である。
|