研究課題/領域番号 |
22K18268
|
研究機関 | 筑波大学 |
研究代表者 |
山田 洋一 筑波大学, 数理物質系, 准教授 (20435598)
|
研究分担者 |
上野 裕 東北大学, 学際科学フロンティア研究所, 助教 (00775752)
渋田 昌弘 大阪公立大学, 大学院工学研究科, 准教授 (70596684)
|
研究期間 (年度) |
2022-06-30 – 2025-03-31
|
キーワード | 超原子分子軌道 / SAMO / 有機半導体 |
研究実績の概要 |
超原子分子軌道(SAMO)とは、低次のRydberg軌道として理解される、有機分子の周辺に広く広がった、対象性の良い電子軌道である。これを電子電動に利用で きれば、有機半導体の移動度向上に大きく貢献できる。しかし、SAMOはそのエネルギーが高く、これを実用化するにはエネルギーの制御手法が求められる。さらに、単分子のSAMOではなく、固体(薄膜)状態のSAMOが応用上重要となる。 本研究は、山田らがこれまで進めてきた薄膜のSAMOに関するプロジェクト(基盤研究(B):Li内包C60薄膜を利用した超原子分子軌道(SAMO)の精密研究)で得られた成果を発展させ、有機半導体のSAMO研究を進展させる計画である。 本年度は、その展開の第一歩として、Li@C70の薄膜の評価に取り組み、Li@C60とは異なる特徴をみいだしてきた。フラーレンの内部空間中のLiの位置によるSAMOエネルギーが変化する可能性を実験的に示し、Li@C60に関しては理論計算論文を出版した。また、Li@C60やさらに高次の内包フラーレンに関する計算結果の論文化を準備している。 一方、本研究では、新規なSAMO計測の手法の開拓を進めてきており、電解電子放射顕微鏡(FEM)を用いた単分子のSAMOイメージングが可能であることが明らか にしてきた。これにより、内包フラーレンに限らず、単分子のSAMOを実時間、実空間で観察することが可能となってきた。これに関する原著論文が現在投稿中(プレプリントはSSRNに掲載済み)である。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
本研究は、山田らがこれまで進めてきた薄膜のSAMOに関するプロジェクト(基盤研究(B):Li内包C60薄膜を利用した超原子分子軌道(SAMO)の精密研究)で得られた成果を発展させ、有機半導体のSAMO研究を進展させる計画である。本年度はその準備段階である。また、本研究で必要となる物品(STMコントローラ)がヨーロッパの混乱の影響により納品が大幅に遅れており、いまだ本格的な研究に着手できてはいないが、以下に示すように、着実に成果があがってきている。 本年度は、 SAMO研究展開の第一歩として、Li@C70の薄膜の評価に取り組み、Li@C60とは異なる特徴をみいだしてきた。これに関して応用物理学会において発表を行ってた。この過程で、フラーレンの内部空間中のLiの位置によるSAMOエネルギーが変化する可能性を実験的に示し、Li@C60に関しては理論計算論文を出版した。また、Li@C60やさらに高次の内包フラーレンに関する計算結果の論文化を準備している。 一方、本研究では、新規なSAMO計測の手法の開拓を進めてきており、電解電子放射顕微鏡(FEM)を用いた単分子のSAMOイメージングが可能であることが明らかにしてきた。これにより、内包フラーレンに限らず、単分子のSAMOを実時間、実空間で観察することが可能となってきた。これは当初研究計画にはない方向であったが、SAMO研究には非常に有用となる。これに関する原著論文が現在投稿中(プレプリントはSSRNに掲載済み)である。
|
今後の研究の推進方策 |
今後は、当初は初年度に納品予定であったSTMコントローラが納品される予定であり、それを用いた本格的なSTM研究が開始できる。これにより、本研究計画tで予定されている、分子複合体のSAMOの研究が可能となる。 また、今年度に開発した、電解電子放射顕微鏡(FEM)を用いた単分子のSAMOイメージングの更なる発展を狙う。これで分子複合体のSAMOなどを実時間、実空間での計測を狙う。 研究分断者の渋田の2PPE計測は今年度順調に計測することができた。今後はデータ解析と理論計算を進めて論文化が可能である。また、研究分担者の上野は、新たな内包フラーレンの合成が出来つつある。また、内包フラーレンとホスト分子の複合体化の研究も進めており、来年度はこれらの分子のSAMOの実空間計測が可能となる予定である。
|
次年度使用額が生じた理由 |
当初導入予定だった物品(STMコントローラ)の納期が、ヨーロッパの経済・政情不安定により大幅に納品が遅れたため。
|