ポテンシャルがユークリッド空間における滑らかでコンパクトな framed 部分多様体上で0となるような臨界周波数の場合を考察した。臨界周波数の場合に,ポテンシャル関数の零点の連結成分がコンパクトで滑らかなframed部分多様体であるものが複数個ある場合に,それぞれの多様体から離れると指数的に減衰していて,各多様体のまわりでの解の極限プロファイルはその余次元と同じ次元の空間における正値球対称解となっているような正値解について考察した。リャプノフ・シュミットの縮約法を用いることにより,上の条件を満たす正値解を持つような微小パラメーターの値で0に近づく列が存在することを示した。
|