研究実績の概要 |
コホモロジー理論とは、様々な代数多様体の「形」を計算する代数的技術である。代数的トポロジーの分野では、多様体に対して定まる「コホモロジー」とよばれる環を観察することで多様体の「形」に関する情報を得る。また、コホモロジー以外にも、「K-理論」「一般コホモロジー」など、多様体の「形」を知るのに有用な環構造が開発されており、それぞれが重要な研究対象である。 本研究では、旗多様体と呼ばれる基本的な多様体の「量子K理論」を研究対象とする。旗多様体の量子K理論は、アフィングラスマニアンの「K理論」と同型であることが知られており(「K-ピーターソン同型」)、この同型を通じて2つの代数を比較し、旗多様体の「形」に関するさまざまな情報を得ることができる。本研究代表者の先行研究では、K-ピーターソン同型を、物理数理の方程式の一つ「相対論的戸田方程式」の技術を用いて構成した(T.Ikeda, S. Iwao, and T. Maeno "Peterson Isomorphism in K-theory and Relativistic Toda Lattice", IMRN 2020, (19), 6421-6462)。本年度はその結果を発展させて、アフィングラスマニアンのK理論の分析に重要な「K-ホモロジーシューベルト計算」を行い、閉k-シューア関数が、k-カタラン関数を用いて記述できることを証明した。(本結果はAmerican Mathematical SocietyのTransactions, Series Bに掲載済みである。)
|