• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2014 年度 実績報告書

結び目理論研究とその応用

研究課題

研究課題/領域番号 24244005
研究機関大阪市立大学

研究代表者

河内 明夫  大阪市立大学, 大学院理学研究科, 特任教授 (00112524)

研究期間 (年度) 2012-04-01 – 2017-03-31
キーワード結び目理論 / トポロジー / 物理 / 化学 / 生物
研究実績の概要

結び目理論と関係して、広範ないろいろな研究分野の中で個別的に進展が図られてきた研究を、研究代表者は連携研究者(計20名)と適宜連絡を取りながら、結び目をキーワードとして、トポロジーに力点を置き、関連する物理・化学・生物を視野に入れながら、数学全般の発展を促すべく活動した。また、大阪市立大学数学研究所を活動拠点に置き、21世紀COEの事後評価(事前開示)で「設定された目的は十分達成された」の総合評価を受けた数学研究所の21世紀COEの数々の活動実績を有効に利用して、第一線の研究者及び将来有望な若手研究者の招聘によって、また東アジアの8つの研究所と締結した研究協力協定に基づいた教育研究交流活動を基盤として、アジアとの研究ネットワークを構築を目指し、活動した。大学院学生、PD研究員(数学研究所員)に、国内・海外研修の機会を提供する等、国内外の研究者の活躍を積極支援し、特に次のような国際会議への参加支援を行った。大阪市立大学数学研究所・慶北国立大学・釜山国立大学合同の第7回大学院学生ワークショップと第5回KOOK-TAPU合同セミナー(韓国数理科学国立研究所(NIMUS)での同時開催)。結び目理論に関する国際数学者会議のサテライト国際会議(韓国釜山開催)。結び目理論に関する東アジアセミナー(中国上海開催)。また、種々の国内の定期会合(KOOKセミナー、Intelligence of Low Dimensional Topology(ILDT)、トポロジー新人セミナー、4次元のトポロジー、東北結び目セミナー、結び目の数学等々)への参加支援を行った。研究代表者の業績としては、無限巡回基本群を持つなめらかな4次元多様体は位相的に分離するという予想の解決などの進展があった。

現在までの達成度 (区分)
現在までの達成度 (区分)

1: 当初の計画以上に進展している

理由

予定された種々の(国際、国内)会合、すなわち大阪市立大学数学研究所・慶北国立大学・釜山国立大学合同の第7回大学院学生ワークショップと第5回KOOK-TAPU合同セミナー(韓国数理科学国立研究所(NIMUS)での同時開催)、結び目理論に関する国際数学者会議のサテライト国際会議(韓国釜山開催)、結び目理論に関する東アジアセミナー(中国上海開催)、KOOKセミナー、Intelligence of Low Dimensional Topology(ILDT)、トポロジー新人セミナー、4次元のトポロジー、東北結び目セミナー、結び目の数学等々で、たくさんの研究成果を挙げたばかりでなく、研究代表者自身長らく懸案であった、無限巡回基本群を持つなめらかな4次元多様体は位相的に分離するという予想を解決し、その成果を論文として出版発表したことが理由に挙げられる。

今後の研究の推進方策

今年度は次のような会合を支援する予定である。
① 大阪市立大学数学研究所に於いて、大阪市立大学数学研究所、慶北国立大学、釜山国立大学合同の第8回大学院学生ワークショップと第6回KOOK-TAPU合同セミナーが同時開催され、大学院学生20名とKOOK-TAPU合同セミナーで講演予定の付添教員5名程度が、韓国から出席予定であるが、滞在費の補助を予定している。
②大阪市立大学数学研究所で1月に開催予定の結び目理論に関する東アジアセミナーを積極支援する。
③作間誠先生,金信泰造先生,中西康剛先生の還暦を記念する拡大KOOKセミナーの開催および昨年亡くなられた細川藤次先生メモリアルシンポジウムの開催を積極支援する。
④種々の国内の定期会合へ参加する研究者の旅費補助。N-KOOKセミナー、Intelligence of Low Dimensional Topology(ILDT)、トポロジー新人セミナー、結び目の数学、東北結び目セミナー等。
また、研究代表者自身の研究としては、やはり長い間(45年間)予想されていた、リボン曲面結び目のなめらかな解け予想の肯定的解決を出版発表する予定である。

  • 研究成果

    (19件)

すべて 2015 2014 その他

すべて 雑誌論文 (4件) (うち査読あり 3件、 オープンアクセス 1件) 学会発表 (13件) (うち招待講演 13件) 備考 (2件)

  • [雑誌論文] Component-conservative invertibility of links and Samsara 4-manifolds on 3-manifolds2014

    • 著者名/発表者名
      Akio Kawauchi
    • 雑誌名

      Asia Pacific Journal of Mathematics

      巻: 1 ページ: 86~106

    • 査読あり / オープンアクセス
  • [雑誌論文] Splitting a 4-manifold with infinite cyclic fundamental group, revised in a definite case2014

    • 著者名/発表者名
      Akio Kawauchi
    • 雑誌名

      Journal of Knot Theory and Its Ramifications

      巻: 23 ページ: (1450029) 1~6

    • DOI

      10.1142/S0218216514500291

    • 査読あり
  • [雑誌論文] The Alexander polynomials of immersed concordant links2014

    • 著者名/発表者名
      Akio Kawauchi
    • 雑誌名

      Boletin de la Sociedad Matematica Mexicana

      巻: 20 ページ: 559~578

    • DOI

      10.1007/s40590-014-0023-9

    • 査読あり
  • [雑誌論文] トポロジーと数学のいろいろな分野との関連2014

    • 著者名/発表者名
      河内明夫
    • 雑誌名

      数理科学

      巻: 11 ページ: 7~12

  • [学会発表] Moves on the chord diagram of a ribbon surface-link2015

    • 著者名/発表者名
      河内明夫
    • 学会等名
      結び目の数理セミナー Knotting Nagoya
    • 発表場所
      名古屋工業大学(愛知県・名古屋市)
    • 年月日
      2015-03-18
    • 招待講演
  • [学会発表] Knot Theory and Sciences2015

    • 著者名/発表者名
      Akio Kawauchi
    • 学会等名
      JST SAKURA Science Plan for Shimae University and Chonbuk National University
    • 発表場所
      島根大学(島根県・松江市)
    • 年月日
      2015-02-12
    • 招待講演
  • [学会発表] On ribbon surface-link2015

    • 著者名/発表者名
      Akio Kawauchi
    • 学会等名
      The 10th East Asian School of Knots and Related Topics
    • 発表場所
      Shanghai (China)
    • 年月日
      2015-01-28
    • 招待講演
  • [学会発表] Equivalence of chord diagrams for a ribbon surface-link2014

    • 著者名/発表者名
      Akio Kawauchi
    • 学会等名
      Colloquium at The Chinese University of Hong Kong
    • 発表場所
      Hong Kong (China)
    • 年月日
      2014-11-26
    • 招待講演
  • [学会発表] Smooth unknotting of a ribbon surface-knot2014

    • 著者名/発表者名
      Akio Kawauchi
    • 学会等名
      IMS Seminar at The Chinese University of Hong Kong
    • 発表場所
      Hong Kong (China)
    • 年月日
      2014-11-25
    • 招待講演
  • [学会発表] Smooth unknotting of a ribbon surface-knot2014

    • 著者名/発表者名
      河内明夫
    • 学会等名
      研究集会「4次元トポロジー」
    • 発表場所
      大阪市立大学(大阪府・大阪市)
    • 年月日
      2014-11-21
    • 招待講演
  • [学会発表] Unknotting notions for spatial graphs2014

    • 著者名/発表者名
      Akio Kawauchi
    • 学会等名
      Discussion meeting related to Knot Theory
    • 発表場所
      Ropar (India)
    • 年月日
      2014-10-27
    • 招待講演
  • [学会発表] Chord systems for ribbon surface-knots2014

    • 著者名/発表者名
      Akio Kawauchi
    • 学会等名
      Workshop: Knots, Braids and Topology
    • 発表場所
      Mohali (India)
    • 年月日
      2014-10-26
    • 招待講演
  • [学会発表] Topological splitting of a 4-manifold with infinite cyclic fundamental group and its applications to surface-knot, theory2014

    • 著者名/発表者名
      Akio Kawauchi
    • 学会等名
      Workshop: Knots, Braids and Topology
    • 発表場所
      Mohali (India)
    • 年月日
      2014-10-25
    • 招待講演
  • [学会発表] The equivalence on chord diagrams of a ribbon surface-link2014

    • 著者名/発表者名
      河内明夫
    • 学会等名
      東北結び目セミナー
    • 発表場所
      カレッジプラザ(秋田県・秋田市)
    • 年月日
      2014-10-18
    • 招待講演
  • [学会発表] Splitting a smooth 4-manifold with infinite cyclic fundamental group2014

    • 著者名/発表者名
      Akio Kawauchi
    • 学会等名
      ICM satellite conference “Knots and low dimensional manifolds”
    • 発表場所
      Busan (Korea)
    • 年月日
      2014-08-23
    • 招待講演
  • [学会発表] Unknotting notions for spatial graphs2014

    • 著者名/発表者名
      Akio Kawauchi
    • 学会等名
      The 2014 KMJ Conference for Accreditation Strategies
    • 発表場所
      Daegue (Korea)
    • 年月日
      2014-08-08
    • 招待講演
  • [学会発表] A chord diagram for a ribbon surface-link2014

    • 著者名/発表者名
      Akio Kawauchi
    • 学会等名
      6th KOOK-TAPU Joint Seminar
    • 発表場所
      Daejeon (Korea)
    • 年月日
      2014-07-22
    • 招待講演
  • [備考] 河内明夫著作

    • URL

      http://www.sci.osaka-cu.ac.jp/~kawauchi/index.html

  • [備考] 大阪市立大学数学研究所ホームページ業績データ

    • URL

      http://www.sci.osaka-cu.ac.jp/math/OCAMI/gyouseki.html

URL: 

公開日: 2016-06-01  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi