• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2018 年度 研究成果報告書

導来圏の安定性条件とDonaldson-Thomas不変量の研究

研究課題

  • PDF
研究課題/領域番号 26287002
研究種目

基盤研究(B)

配分区分一部基金
応募区分一般
研究分野 代数学
研究機関東京大学

研究代表者

戸田 幸伸  東京大学, カブリ数物連携宇宙研究機構, 教授 (20503882)

研究期間 (年度) 2014-04-01 – 2019-03-31
キーワード連接層の導来圏 / 安定性条件 / Donaldson-Thomas不変量 / Gopakumar-Vafa不変量
研究成果の概要

3次元カラビヤウ多様体上の連接層の導来圏上の安定性条件について研究し、半安定対象のモジュライ空間を構成した。これを用いて、3次元カラビヤウ多様体上の安定層や曲線を数え上げるDonaldson-Thomas不変量の研究に応用を与えた。また3次元及び4次元カラビヤウ多様体上の1次元層を数え上げるGopakumar-Vafa不変量の数学的定義を与え、Donaldson-Thomas不変量との明示的な関係を予想し、様々な場合に予想を証明した。

自由記述の分野

代数幾何学

研究成果の学術的意義や社会的意義

3次元カラビヤウ多様体は物理学の超弦理論においても考察される数学的対象であり、特にこの上のGopakumar-Vafa不変量は物理学者のGopakumarとVafaによって提唱された重要な不変量である。よってその不変量の数学的に厳密な定義を与える事は数学・物理双方にとって意義深いものである。Maulik氏との共同研究でGopakumar-Vafa不変量の数学的定義を与えることに成功し、この不変量の更なる理解を深めることができた。

URL: 

公開日: 2020-03-30  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi