2022 Fiscal Year Final Research Report
Theories, metrologies, and observations of optical forces for establishing basics of optical manipulation
Project Area | Nano-Material Manipulation and Structural Order Control with Optical Forces |
Project/Area Number |
16H06504
|
Research Category |
Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
|
Allocation Type | Single-year Grants |
Review Section |
Science and Engineering
|
Research Institution | Osaka University (2020, 2022) Osaka Prefecture University (2016-2019) |
Principal Investigator |
Ishihara Hajime 大阪大学, 大学院基礎工学研究科, 教授 (60273611)
|
Co-Investigator(Kenkyū-buntansha) |
川野 聡恭 大阪大学, 基礎工学研究科, 教授 (00250837)
菅原 康弘 大阪大学, 工学研究科, 教授 (40206404)
秋田 成司 大阪公立大学, 工学(系)研究科(研究院), 教授 (60202529)
細川 千絵 大阪公立大学, 大学院理学研究科, 教授 (60435766)
|
Project Period (FY) |
2016-06-30 – 2021-03-31
|
Keywords | 光圧 / 分子流体力学 / 単一分子計測 / 光物性理論 / 光マニピュレーション |
Outline of Final Research Achievements |
In theory, we theoretically predicted the use of counter waves as a method of extracting resonant light pressure, which led to experimental verification. The prediction of a novel manipulation of optical force based on nonlinear optical effects also led to experimental results. Experimentally, we established a method for precise measurement of optical force with an accuracy of about 1 fN or better. We have also succeeded in obtaining a spatial map of quantum dots with a resolution of less than 1 nm using optical force. In addition, through joint research by experts in molecular fluid dynamics and biotechnology, we precisely measured and analyzed multi-particle motion under optical force in fluids, and clarified the mechanism of motion of nanoparticles by optical force in fluids, such as the generation of a large-scale flow of surrounding particles driven by the motion of trapped particles due to scattering forces.
|
Free Research Field |
ナノ光圧科学
|
Academic Significance and Societal Importance of the Research Achievements |
様々な媒質における平衡、非平衡環境下でナノ物質が受ける光圧と、誘起される運動の計測・観測、及びそれを理論的に評価して、互いがどのように整合するかを追求し、光圧を識るための基盤技術の確立に寄与した。また、流体中で物質運動を光圧により人為的に制御する研究過程で、その精密観測・解析から流体中の多粒子相関、或いは環境と微粒子の運動相関についての新しい理解が得られ、新奇な分子流体力学の方法論が構築された。加えて光圧を走査型顕微鏡に応用し、光を用いる走査型顕微鏡としては従来とは桁違いの1nmを切る分解能を世界で初めて達成したが、この成果は、走査型顕微鏡の技術分野に全く新しい方向性を与えた。
|