• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Exploration of Mechano-Functions Based on Aquatic Functional Materials

Planned Research

  • PDF
Project AreaAquatic Functional Materials: Creation of New Materials Science for Environment-Friendly and Active Functions
Project/Area Number 19H05721
Research Category

Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

Allocation TypeSingle-year Grants
Review Section Science and Engineering
Research InstitutionOsaka University

Principal Investigator

TAKASHIMA YOSHINORI  大阪大学, 大学院理学研究科, 教授 (40379277)

Co-Investigator(Kenkyū-buntansha) 松葉 豪  山形大学, 大学院有機材料システム研究科, 教授 (10378854)
Project Period (FY) 2019-06-28 – 2024-03-31
Keywords分子接着 / 界面物性計測 / 水圏融合材料 / 水環境合成 / 超高強度・高靭性材料 / 分子接着技術 / 応力分散性
Outline of Final Research Achievements

This research project aimed to create aquatic mechano-functional materials that dynamically express interfacial functions by integrating the construction of structures that harmonize and respond to aquatic environments without distinguishing between organic and inorganic materials, and manufacturing based on aquatic environmental harmony. Takashima (the principal investigator) successfully created high-strength aquatic mechano-adhesive materials and aquatic hybrid materials with high strength and toughness functions that dynamically respond to adhesive force based on molecular adhesion and supramolecular science,. Matsuba (a research collaborator), based on measurement techniques for evaluating aquatic polymer materials and interfacial properties, elucidated the relationship between water and polymer material functions

Free Research Field

高分子化学

Academic Significance and Societal Importance of the Research Achievements

材料力学の特徴として、強度と延伸性はトレードオフの関係にある。これらの機能を超越するために、可逆的架橋点、または可動性架橋点を持った材料と無機結晶や無機フィラーを複合化させた。特に水圏メカノ機能材料の作製には、最適水環境で合成することがポイントとなった。破断強度や破壊エネルギーの向上には有機・無機材料が持つ両方の機能を最大限に発揮し、 強靭かつ自己修復機能を示し、リサイクル可能な超分子材料を得た。さらに二つを「つなぐ」分子接着により革新的強靭性が達成することができた。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi