• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2004 Fiscal Year Annual Research Report

安定写像の大域的特異性と多様体のトポロジーの研究

Research Project

Project/Area Number 04J01969
Research InstitutionHokkaido University

Principal Investigator

山本 稔  北海道大学, 大学院・理学研究科, 特別研究員(PD)

Keywords折り目写像 / 特異点集合 / 特異値集合 / 写像空間
Research Abstract

今年度は曲面間の折り目写像について以下の研究を行った.
1.赤道にのみ折り目特異点を持つ向き付けられた2次元球面から平面への折り目写像全体からなる写像空間を考える.この空間のホモトピー型については1970年代にEliashbergがh-principleを応用する事で決定しているが,彼の方法は非常に難解である.そこで私は新たに幾何的・組合わせ的な手法を構築する事で上記の空間の連結成分数を決定した.この結果は7月のフランスCIRM研究所での国際研究集会「VIII Sao Carlos International Worshop on Real and Complex Singularities at CIRM」,11月の東京大学での研究集会「多様体のトポロジーの未来へ」,1月の南フロリダ大学での談話会,1月のブリガム・ヤング大学でのトポロジーセミナーで発表した.来年度はトーラスから平面への折り目写像など別の折り目写像の空間の連結成分数を計算したり,これらの空間のホモトピー型を決定する手法を構築する予定である.
2.向き付けられた種数gの閉曲面から向き付けられた2次元球面への写像度dの折り目写像全体の空間を考える.この空間の各元に対し,特異点集合の連結成分数を対応させるという連続写像を定義する.私はg,dを固定するごとにこの連続写像の最小値を決定した.この結果は2月のカリフォルニア大学リバーサイド校でのトポロジーセミナーで発表した.来年度は値域多様体を一般の向き付けられた閉曲面にしたり,最小値を与える折り目写像全体の空間に対して,特異点集合の配置の種類やその空間のトポロジー等について研究する予定である.

  • Research Products

    (1 results)

All 2004

All Journal Article (1 results)

  • [Journal Article] EVERSION OF A FOLD MAP OF S^2 TO R^2 WITH ONE SINGULAR SET2004

    • Author(s)
      山本 稔
    • Journal Title

      数理解析研究所講究録 1374

      Pages: 188-200

URL: 

Published: 2006-07-12   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi